	http	o://www.spp
Total No	o. of Questions :8] SEAT No. :	
P2673		of Pages :2
	[5022] - 4001	8
	M.Sc.	
	PHYSICS	
	PHYUT 801 - Nuclear Physics	
	(New Course) (2014 Pattern) (4 Credits) (Semester -	IV)
Time : 3	B Hours] [Max	. Marks :50
Instructi	ions to the candidates:	
1)	Attempt any five out of eight questions.	
2)	Neat diagrams must be drawn wherever necessary.	
3)	Figures to the right indicate full marks.	
4)	Use of logarithmic tables & electronic calculator is allowed.	
Q1) a)	Discuss the method of measurements of nuclear radii bas principle of electron scattering.	ed on the [4]
b)	Explain the internal pair conversion process.	[3]
c)	Calculate the activity of 10g of ²³² Th. Given: λ of ²³² Th = 1.58×1	10 ⁻¹⁸ S ⁻¹ .[3]
Q2) a)	What is beta decay? Describe neutrino hypothesis of β - decay	ay. [4]
b)	Write a short note on nuclear magnetic moment.	[3]
c)	Find the energy required in joules to break 12 C into 3 alpha paratomic mass of 12 C = 12 amu & 4 He = 4.0026 amu.	ticles. The

- b) Give two experimental evidences of magic numbers. [3]
- c) In a scintillation detector, the 662 keV photopeak of ¹³⁷Cs source is observed at 6 V & the full width at half maximum of the photo peak is 0.72V. Find the % resolution of the detector. Also find its resolution in keV. [3]

- **Q4)** a) Explain the shell model of nucleus by discussing the role of spin-orbit coupling. [4]
 - b) What will be the threshold energy for the following reaction. [3]

238
 U (4 He, 3 1 n) 239 Pu

Given:
$$M(^{238}U) = 238.050785$$
 amu

$$M(^{4}He) = 4.002603$$
 amu

$$M(^{239} Pu) = 239.052158 amu$$

$$M(^{1}n) = 1.00866501$$
 amu.

- c) What are the conservation laws of nuclear reactions. [3]
- **Q5)** a) On the basis of chain reaction derive the Four Factor formula for the Finite size reactor. [4]
 - b) Explain the principle, working of Van-de-Graff accelerator. [3]
 - c) What is an electron synchrotron? Discuss its theory. [3]
- **Q6)** a) What is nuclear reactor? Name the reactor materials and their uses. [4]
 - b) Explain the concept of phase stability in the microton. [3]
 - c) The proton synchrotron can produce protons of nominal total energy 3 GeV. What is the kinetic energy of charge 6⁺ ¹⁴N ions accelerated by this accelerator. [3]
- Q7) a) Discuss P-P scattering & also the phase shift analysis of it. [5]
 - b) Explain in detail the quark model & explain the various types of quarks along with their properties. [5]
- **Q8)** a) Explain which of the following reactions are allowed or forbidden under the conservation of strangeness, baryon numbers & charge. [5]
 - i) $\Pi^+ + p \rightarrow k^0 + k^+$
 - ii) $\Pi^- + p \rightarrow \Lambda^0 + k^0$
 - b) Explain: [5]
 - i) Isospin
 - ii) Gell-Mann Nishijima scheme.

