Total No. of Questions: 6]

SEAT No.:			
[Total	No. of Pages	:	3

P2012

[4923]-402 M.Sc.

PHYSICAL CHEMISTRY

CHP-411: Surface Chemistry and Electrochemistry (2013 Pattern) (Semester - IV)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of logarithmic table / calculator is allowed.

Physico - Chemical Constants

	<u> </u>	joico Chem	1011	Constants
1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mof}^{-1}$
2.	Boltzmann Constant	k		$1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$
			=	$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h	==	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	e	==	$4.803 \times 10^{-10} \text{ esu}$
			=	1.602 × 10 ⁻¹⁹ C
5.	1 eV		=	23.06 k cal mol ⁻¹
				$1.602 \times 10^{-12} \text{ erg}$
				$1.602 \times 10^{-19} \text{ J}$
				8065.5 cm ⁻¹
6.	Gas Constant			8.314 × 10 ⁷ erg K ⁻¹ mol ⁻¹
				8.314 J K ⁻¹ mol ⁻¹
				1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	=	96487 C equiv ⁻¹
8.	Speed of light	c	=	$2.997 \times 10^{10} \text{ cm s}^{-1}$
			=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	l cal		== .	$4.184 \times 10^7 \text{erg}$
		:	=	4.184 J
10.	1 amu	:	=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β_{ϵ}	-	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β_n :	=	$5.051 \times 10^{-27} \text{ J T}^{-1}$
13.	Mass of an electron	m =	=	$9.11 \times 10^{-31} \text{ kg}$
		·		_

SECTION - I

01)	Answer	precisely	v the	follo	owing:
∇I		DICTION	,	TOIL	O * * 11115

[10]

- a) Give the characteristics of a liquid monomolecular film.
- b) What is cmc? Give the structure of micellas.
- c) State two limitations of BET theory.
- d) What are 'ink-bottle' pores?
- e) Write Gibbs equation for adsorption and define the terms therein.

Q2) Answer any two of the following:

[10]

- a) Describe the tracer method for verification of the Gibbs equation.
- b) Stating the assumptions, derive the Langmuir equation for adsorption.
- c) Derive the two dimensional ideal gas law for the film of adsorbed solute in dilute solutions.
- d) Discuss the Zsigmondy's theory for adsorption hysteresis.

Q3) Solve any one of the following:

[5]

- a) A solid in contact with gas at 12kPa and 28°C adsorbs 2.5×10^{-3} g of the gas and obeys the langmuir isotherm. The enthalpy change when 1.0 mmol of the adsorbed gas is desorbed is +10.2J. What is the equilibrium pressure for the adsorption of 2.5mg of the gas at 40°C?
- b) The adsorption of butane vapour on 1.85g catalyst was studied at 0°C. The data when fitted in BET equation yielded a linear plot with the slope of 3.895×10^{-2} ml⁻¹ and intercept of 1.85×10^{-3} ml⁻¹. The area occupied
 - per molecule of butane is 44.6 ${\rm \mathring{A}}^2$. Determine the specific surface area of the catalyst.

SECTION - II

Q4) Answer precisely the following:

[10]

- a) Define true electrolyte and potential electrolyte.
- b) Write equation for heat of hydration of positive ion having co-ordination number four based on Bernal Fowler model. Explain the terms involved in it.
- c) Define the term flux and enlist the names of three types of fluxes.
- d) Define the terms drift velocity and absolute mobility of ion.
- e) Write the equation for corrosion current and explain the terms involved in it.

Q5) Answer any two of the following:

[10]

- a) Derive the Fick's first law for steady-state diffusion.
- b) Derive the D.H. equation for activity coefficient considering the ion size parameter 'a'.
- c) Write a note on any one fuel cell.
- d) Discuss the stern theory of electrical double layer.

Q6) Solve any one of the following:

[5]

- a) If the Tafel constants a and b have values 0.64 and 0.123 respectively for reduction of hydrogen ion. Calculate the transfer coefficient ' α ' and exchange current density i at 298K.
- b) Calculate the thickness of ionic atmosphere at 25°C in 0.05M solution of LiCl.

[Given: Dielectric constant of water = 78.54].

