Total No. of Questions : 6]

SEAT No.:	
[Total	No. of Pages : 3

P1479

[5223]-52 M.Sc.

PHYSICAL CHEMISTRY

CH-411: Surface Chemistry and Electro-Chemistry (2008 Pattern) (Old) (Semester - IV)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Answers to the TWO sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables and calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico-Chemical Constants

1.	Avogadro Number	N	$= 6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k	$= 1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$
			$= 1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h	$= 6.626 \times 10^{-27} \text{ erg s}$
			$= 6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	e	$=4.803 \times 10^{-10} \text{ esu}$
			$= 1.602 \times 10^{-19} \text{ C}$
5.	leV		$= 23.06 \text{ k cal mol}^{-1}$
			$= 1.602 \times 10^{-12} \text{ erg}$
			$= 1.602 \times 10^{-19} \text{ J}$
			$= 8065.5 \text{ cm}^{-1}$
6.	Gas Constant	R	$= 8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
			$= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
			$= 1.987 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$
7.	Faraday Constant	F	$= 96487 \text{ C equiv}^{-1}$
8.	Speed of light	c	$= 2.997 \times 10^{10} \text{ cm s}^{-1}$
			$= 2.997 \times 10^8 \text{ m s}^{-1}$
9.	1 cal		$= 4.184 \times 10^7 \text{ erg}$
			= 4.184 J
10.	1 amu		$= 1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	$\beta_{\rm e}$	$= -9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β_n	$= 5.051 \times 10^{-27} \text{ J T}^{-1}$
13.	Mass of an electron	m _e	$= 9.11 \times 10^{-31} \text{ kg}$

SECTION-I

Q1) Attempt any three of the following.

[15]

- a) Explain the term wetting and nonwetting. Explain wetting as a capillary action phenomenon.
- b) Describe the microtome method for verification of Gibbs adsorption equation.
- c) Describe with a neat sketch, the volumetric method for the study of gas adsorption.
- d) Stating the assumptions, how is the surface area of a solid determined by using B.E.T. equation.
- e) What is flotation? Explain its mechanism.

Q2) Attempt any three of the following.

[15]

- a) Discuss the role of zeolites as a catalyst in industrial processes.
- b) State at least three catalysts with reactions for heterogeneous catalysis. What is the method for naming catalyst?
- c) Explain the phenomenon of hysteresis on the basis of capillary condensation.
- d) Give the comparison between B.E.T. theory and H-J theory.
- e) Write a note on heterohomogeneous catalysis.

Q3) Solve any two of the following.

[10]

- a) The volume of oxygen gas at 0° C and 101 kPa adsorbed on the surface of 1.00g of a sample of silica at 0° C was 0.284 cm³ at 142.4 Torr and 1.430 cm³ at 760 Torr. Determine the value of monolayer capacity V_{mon} .
- b) An insoluble compound 'X' spreads on water to give a gaseous type film at low concentrations. When 10⁻⁷g of 'X' is added to 200 cm² surface, the surface tension at 25°C is lowered by 0.20 dyne cm⁻¹. Calculate the molecular weight of 'X'.
- c) The surface tension of an aqueous solution varies with concentration of solute according to equation

$$\gamma = 70-350$$
 C, where C = 0.05 M.

Calculation the value of K for the variation of surface excess of solute with concentration, where K is defined as $K = \Gamma \cdot \sqrt{C}$. The temperature is 25°C.

SECTION-II

Q4) Answer any three of the following.

[15]

- a) Write Bernal-Fowler equation for heat of solution, explain the terms involved in it.
- b) Explain the Gouy-Chapman diffuse layer theory for electrical double layer.
- c) Explain different way of transport of ions in solution.
- d) Explain the term ionic strength. How does it affect the thickness of ionic atmosphere and mean activity coefficient of an electrolyte?
- e) Write a note on electrosynthesis.

Q5) Answer any three of the following.

[15]

- a) Explain the Wagner and Traud mechanism for corrosion of ultrapure metal.
- b) Derive Einstein relation between the absolute ionic mobility and diffusion coefficient.
- c) Describe with a neat labelled diagram H_2 - O_2 fuel cell.
- d) What is passivation? Discuss the general mechanism of passivation.
- e) Explain the terms
 - i) Faradic efficiency
 - ii) Voltage efficiency
 - iii) Overall efficiency
 - iv) Maximum efficiency

Q6) Solve any two of the following.

[10]

a) The following rection may be made to operate in fuel cell at 300k

$$CH_4 + 2O_2 \rightleftharpoons CO_2 + 2H_2O(1), \Delta H_{300} = -890.4 \text{ KJ mol}^{-1},$$

 $\Delta G_{300} = -818.0 \text{ KJ mol}^{-1} \text{ calculate}$

- i) number of electrons transferred in overall cell reaction
- ii) reversible emf of cell at 300K
- iii) maximum efficiency
- b) Calculate the thickness of ionic atmosphere at 27°C in 0.05 M solution of LiCl.
- c) Calculate the ionic strength of mixture of 50ml 0.05 M ZnCl₂ and 50 ml 0.15 M NH₄Cl

