Total No. of Questions :6]

-	_	_	_	4
D	1	Q	Q	1
1	ı	O	O	1

SEAT No. :	
------------	--

[Total No. of Pages: 3

[5223]-401 M.Sc. -II

PHYSICAL CHEMISTRY

CHP - 410 : Molecular Structure & Spectroscopy (New) (2013 Pattern) (Semester - IV)

Time: 3 Hours

[Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Answers to the two sections should be written in separate answer books
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of logarithmic tables/calculator is allowed.

Physico - Chemical Constants

1.	Avogadro Number	N	==	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	\mathbf{k}	==	1.38 × 10 ⁻¹⁶ erg K ⁻¹ molecule ⁻¹
			=	$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h	==	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	e	=	$4.803 \times 10^{-10} \text{ esu}$
			=	$1.602 \times 10^{-19} \mathrm{C}$
5.	1 eV		=	23,06 k cal mol ⁻¹
				$1.602 \times 10^{-12} \text{ erg}$
				$1.602 \times 10^{-19} \mathrm{J}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R		$8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
				8.314 J K ⁻¹ mol ⁻¹
			=	1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	=	96487 C equiv ¹
8.	Speed of light	Ċ	=	$2.997 \times 10^{10} \text{ cm s}^{-1}$
			=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	1 cal		=	$4.184 \times 10^7 \text{ erg}$
			=	4.184 J
10.	1 amu		=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β	=	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β		$5.051 \times 10^{-27} \mathrm{J} \mathrm{T}^{-1}$
13.	Mass of an electron	m	=	$9.11 \times 10^{-31} \text{ kg}$
	•	•		_

SECTION - I

Q1) Attempt the following:

[10]

- a) Discuss factors influencing coupling constant.
- b) Explain the theory of spin-spin interaction for an ABC type molecule.
- c) Explain principle of esr.
- d) State and explain Mc connell relation. Explain the terms there in.
- e) What are quadrupole nuclei and quadrupole moments in nqr spectroscopy?

Q2) Attempt any two of the following:

[10]

- a) Write a note on ¹³C nmr spectroscopy.
- b) State the characteristics of high resolution nmr instrumentation.
- c) Describe the working of esr spectrometer using block diagram.
- d) Explain applications of nqr. Give examples.

Q3) Solve any one of the following

[5]

a) Calculate the frequency separation of nuclear spin states in ¹³C nucleus with magnetic field.

14.4 T. The magnetogyric ratio is
$$6.73 \times 10^7 \text{ T}^{-1}\text{s}^{-1}$$
. [I = $\frac{1}{2}$ for ^{13}C]

b) Compare the number of lines in esr of radicals

•XH₂ and •XD₂
$$\left[\dot{X} \text{ spin state is } \frac{5}{2}\right]$$
.

SECTION - II

Q4) Attempt the following:

[10]

a) Describe the theory of paramagnetism.

[5223]-401

- b) State limitations of Bragg's method.
- c) Explain principle of XRD.
- d) What causes electron diffraction patterns to occur?
- e) Differentiate between neutron and electron diffraction.

Q5) Attempt any two of the following:

[10]

- a) Derive the Langevin equation for magnetic suceptibility.
- b) Compare Guoy and Faraday techniques.
- c) Discuss the applications of XRD in structural analysis.
- d) Describe electron diffraction analysis technique giving a diagram and indicate how the wierl equation is used to deduce molecular geometry.

Q6) Solve any one of the following

[5]

- a) Calculate the volume and mass paramagnetic suceptibilities of a sample of a complex salt with 3 unpaired electrons, at 25°C.
 - [Density = 3.24 g cm^{-3} , molar mass = 200g mol^{-1}]
- b) A beam of X-rays having 154.1 pm wavelength is reflected at 22.2° by a silver crystal. Deduce the interplanar spacing in the silver crystal.(n=1).

####