Total No. of Questions: 4]

SEAT No.:	
[Total	No. of Pages : 3

P1480

[5223] - 53 M.Sc. - II

PHYSICAL CHEMISTRY

CH-414: Biophysical Chemistry and Related Techniques (Old) (2008 Pattern) (Semester - IV) (Optional)

Time: 3 Hours]

[Max. Marks:80

Instructions to the candidates:

- 1) Answers to the TWO sections should be written in SEPARATE answer books.
- 2) ALL questions are COMPULSORY.
- 3) Figures to the RIGHT SIDE indicate FULL marks.
- 4) Use of logarithmic table, calculator is ALLOWED.
- 5) Neat diagrams must be drawn WHEREVER necessary.

Physico - Chemical Constants

1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k	==	1.38 × 10 ⁻¹⁶ erg K ⁻¹ molecule ⁻¹
			=	1.38 × 10 ⁻²³ J K ⁻¹ molecule ⁻¹
3.	Planck Constant	h	==	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	е	=	$4.803 \times 10^{-10} \text{ esu}$
	• .		=	$1.602 \times 10^{-19} \mathrm{C}$
5.	1 eV		=	23.06 k cal mol ⁻¹
			_	$1.602 \times 10^{-12} \text{ erg}$
			=	$1.602 \times 10^{-19} \text{J}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R	=	$8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
				8.314 J K ⁻¹ mol ⁻¹
			=	1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	= '	96487 C equiv ¹
8.	Speed of light	c	=	$2.997 \times 10^{10} \text{ cm s}^{-1}$
			=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	l cal		= .	$4.184 \times 10^7 \text{erg}$
			=	4.184 J
10.	1 amu		=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β	=	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β	=	$5.051 \times 10^{-27} \mathrm{J} \mathrm{T}^{-1}$
13.	•	m		$9.11 \times 10^{-31} \text{ kg}$
		c		· ·

SECTION - I

Q1) Attempt any four of the following:

[20]

- a) Compare animal and plant cells.
- b) Discuss Osmosis and reverse osmosis.
- c) Write a note on Donnan membrane equilibrium.
- d) What are flickering clusters?
- e) What is the role of the phosphoanhydride bond in energy transfer?
- f) Compare chaperones with chaperonins.

Q2) Attempt any four of the following:

[20]

- a) How are nucleic acids important in cell biology?
- b) Deduce $\overline{R} = l \times \sqrt{\frac{8N}{3\pi}}$.
- c) Discuss the role of smooth muscles.
- d) Write a note on blood buffering mechanism.
- e) Explain Henderson's equation and its role in buffer preparation.
- f) Enlist the functions of proteins. Give thier tests.

SECTION - II

Q3) Answer any four of the following:

[20]

- a) Explain the structure of a cell membrane on the basis of fluid-mosaic model.
- b) Derive Michaelis-Menton equation for enzyme catalysis.
- c) What is all or none law? Explain.
- d) Enlist the applications of a cell membrane.
- e) State the principle of X-ray diffraction. How is it used to determine the molecular weight of the asymmetric macromolecule?
- f) Write a note on oscillatory reactions.

Q4) Answer any four of the following:

[20]

- a) Briefly discuss any two methods for determination of the size of biopolymers.
- b) Discuss the theory of optical rotary dispersion.
- c) Discuss the application of circular dichroism to study the conformation of biomolecules.
- d) Define the terms:
 - i) Neuron
 - ii) Resting membrane potential
 - iii) Voltage gated channels
 - iv) Action potential and
 - v) Nerve impulse.
- e) Discuss the viscosity method to determine the molecular weight of a biopolymer.
- f) Discuss briefly the factors affecting enzyme activity.

