Total No. of Questions :6]

P2890

SEAT No.	:	

[5023]-404

[Total No. of Pages :3

M.Sc.

PHYSICAL CHEMISTRY

CHP - 413: Biophysical Chemistry

(New) (2013 Pattern) (Semester - IV)

Time: 3 Hours] [Max. Marks:50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of lagarithmic table/calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k	= -	$1.38 \times 10^{-16} \ erg \ K^{-1} \ molecule^{-1}$
			=	$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h	=	$6.626 \times 10^{-27} \text{ erg s}$
			==	$6.626 \times 10^{-34} \mathrm{J}\mathrm{s}$
4.	Electronic Charge	e	=	$4.803 \times 10^{-10} \text{ esu}$
			=.	$1.602 \times 10^{-19} \text{ C}$
5.	1 eV		=	23.06 k cal mol ⁻¹
			=	$1.602 \times 10^{-12} \mathrm{erg}$
			=	$1.602 \times 10^{-19} \mathrm{J}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R	=	$8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
			· ==	8.314 J K ⁻¹ mol ⁻¹
			=	1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	=	96487 C equiv-1
8.	Speed of light	c		$2.997 \times 10^{10} \mathrm{cm} \mathrm{s}^{-1}$
			=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	1 cal		=	$4.184 \times 10^7 \text{erg}$
			=	4.184 J
10.	1 amu		=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β_{e}	=	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β_n	=	$5.051 \times 10^{-27} \text{ J T}^{-1}$
13.	Mass of an electron	m _e	= -	$9.11 \times 10^{-31} \text{ kg}$

SECTION -I

Q1) Attempt the following: [10] Give the colour tests for proteins. a) b) State the Bragg equation. What is the role of mitochondria in a biological cell? c) d) Differentiate between secondary and tertiary proteins. Write the significance of ferritin in metabolism. e) **Q2)** Attempt any two of the following: [10] Explain denaturation of proteins. a) Discuss the classification of proteins. b) c) Explain the gel electrophoresis technique. d) Discuss the types of electrophoresis. **Q3)** Attempt any one of the following: [5] Calculate the standard free energy of the reaction Dihydroxy acetone a) phosphate catalyst Glyceraldehyde 3 phosphate. At equilibrium, the ratio of glyceraldehyde 3 phosphate to dihydroxy acetone phosphate is 0.0475 at 25° C and 7pH. b) Discuss the reactions related to hydrolysis of ATP. **SECTION -II Q4)** Answer precisely the following: [10] What is a nerve? State its types with examples. a)

[5023]-404

b)

Define depolarization and repolarization in generation of an impulse.

- c) Enlist the factors affecting enzyme activity.
- d) Explain the term 'flow birefringence'.
- e) What is reversible enzyme inhibition?

Q5) Answer any two of the following:

[10]

- a) Explain how ions are transported through a cell membrane.
- b) Give the classification of biopolymer particles based on shapes. What are fibrous and globular proteins?
- c) Explain irreversible enzyme inhibition with examples.
- d) Discuss the theory of optical rotatory dispersion.

Q6) Solve any one of the following:

[5]

- a) A polymer sample contains equal number of molecules with molecular weight 10,000 and 20,000. Calculate \bar{M}_n and \bar{M}_w .
- b) 1.0 g of a polyester in 100 cm^3 methyl ethyl ketone required 13.5 cm^3 of 5×10^{-3} m alcoholic kOH for neutralization. Calculate the molecular weight of the polymer.

888