Total	No.	ot	Q	uestions	:	6]	

SEAT No.:			
[Total	No. of Pages	:	3

P1402

[5123]-404 M.Sc.

PHYSICAL CHEMISTRY

CHP - 413: Biophysical Chemistry

(2013 Pattern) (Semester - IV) (New)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answers to the TWO sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic table/calcualtor is allowed.
- *5*) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

1)	Avogadro Number	N	$=6.022 \times 10^{23} \text{ mol}^{-1}$
2)	Boltzmann Constant	k	$= 1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$
			$= 1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3)	Planck Constant	h	$=6.626 \times 10^{-27} \text{ erg s}$
			$= 6.626 \times 10^{-34} \text{ J s}$
4)	Electronic Charge	e	$=4.803 \times 10^{-10} \text{ esu}$
			$= 1.602 \times 10^{-19} \text{ C}$
5)	l eV		$= 23.06 \text{ k cal mol}^{-1}$
			$=1.602 \times 10^{-12} \text{ erg}$
			$= 1.602 \times 10^{-19} \text{ J}$
			= 8065.5 cm ⁻¹
6)	Gas Constant	R	$= 8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
			= 8.314 J K ⁻¹ mol ⁻¹
			= 1.987 cal K ⁻¹ mol ⁻¹
7)	Faraday Constant	F	= 96487 C equiv-1
•	•	С	$= 2.997 \times 10^{10} \text{ cm s}^{-1}$
			$= 2.997 \times 10^8 \text{ m s}^{-1}$
9)	1 cal		$=4.184 \times 10^7 \text{ erg}$
,			= 4.184 J
10)	lamu		$= 1.673 \times 10^{-27} \text{ kg}$
. *	Bohr magneton	В	•
-	Nuclearmagneton	β . β .	$= 5.051 \times 10^{-27} \text{ J T}^{-1}$
•	Mass of an electron	m,	$=9.11 \times 10^{-31} \text{ kg}$
100	TARREST OF MIT ALACATOR	-^-¢	

SECTION - I

Q1) Attempt the following:

[10]

- a) Define proteins and classify them.
- b) How do biological energy processes obey first and second laws of thermodynamics?
- c) Write and explain Bragg's equation.
- d) Enlist types of biological reactions.
- e) What is gel electrophoresis?

Q2) Attempt any two of the following:

[10]

- a) Explain the structrure and functions of proteins.
- b) Discuss the classification of RNA.
- c) What is electrophoresis? Explain its types.
- d) State the principle of XRD. How is applied to study the molecular weight of an asymmetric macromolecule.

Q3) Attempt any one of the following:

[5]

- a) Discuss the reactions involved in ATP hydrolysis.
- b) Calculate the standard free energy of the reaction Dihydroxy acetone phosphate catalyst glyceraldehyde 3 phosphate. At equilibrium, the ratio of the product to reactant is 0.0475 at 7pH and 25°C.

SECTION - II

Q4) Answer precisely the following:

[10]

- a) Mention three layers of a cell membrane with dimensions.
- b) Define the terms Axolemma and endocytosis.
- c) How is the size of biopolymer particles, determined by Brownian motion method?
- d) What is uncompetitive enzyme inhibition?
- e) Define Circular dichroism (CD).

Q5) Attempt any two of the following:

[10]

- a) Discuss the mechanism of muscle contraction.
- b) Describe the end-group determination method to determine the molecular weight of a biopolymer.
- c) Derive the Michaeli's menton equation for enzyme catalysis.
- d) Discuss the application of circular dichroism to study the conformation of biomolecules.

Q6) Attempt any one of the following:

[5]

a) Fractions of a biopolymer, when dissolved in an organic solvent, gave the following intrinsic viscosities at 25°C.

M (g mol ⁻¹)	34,000	61,000	1,30,000
$[\eta]$	1.02	1.6	2.75

Determine K and α in Mark-Hounrink equation.

b) A biopolymer sample has the following distribution of molecular weight.

Fraction	0.15	0.20	0.40	0.15	0.10	
Mol wt	1×10^{4}	1.5×10^{4}	2×10^{4}	3×10^{4}	4×10^{4}	

Calcualte $\overline{\mathbf{M}}_n$ and $\overline{\mathbf{M}}_w$.

