Total No. of Questions :4]

P1878

[5323]-62

SEAT No. :

[Total No. of Pages : 2]

[5323]-62 M.Sc.-II

ANALYTICAL CHEMISTRY

CH-490: Analytical Spectroscopy (2008 Pattern) (Semester-IV)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Answer to the two sections should be written in separate answer books.
- 2) All questions are compulsory and carry equal marks.
- 3) Neat diagrams must be drawn wherver necessary.
- 4) Use of logarithmic table/non-programmable calculator is allowed.

SECTION-I

Q1) Attempt any **four** of the following:

[20]

- a) Enlist the electromagnetic spectral regions that are useful for chemical analysis with electromagnetic radiation spectrum.
- b) Explain the terms:
 - i) Molar absorptivity
 - ii) Radiant power
- c) Give principle of ESCA with schematic diagram explain essential components of ESCA instrument.
- d) Calculate the mass absorptive coefficient of an alloy which consists of 60% Zn, 32% Fe and 8% Cu. The mass absorptive coefficient for pure elements are 840, 570 and 740 cm²/gm respectively for Zn, Fe and Cu.
- e) Calculate the molar extinction coefficient of 1.30×10⁻⁴M solution, which shows 45% transmittance in a 0.9 cm cell.

Q2) Attempt any **four** of the following:

[20]

- a) What is meant by x-ray fluorescence? With schematic diagram explain energy dispersive x-ray fluorometer.
- b) Explain the principle of chemiluminescence? Mention their types. Give an account of chemiluminescence titrations.
- c) Draw and explain the energy level diagram of x-ray induced electron emission.
- d) Write a short note on electro-chemiluminescence.

e) Calculate 1S electron binding energy of nitrogen in tetra methyl ammonium ion from the incident x-ray photon that was used to create the inner shell vacancy had a wavelength of 1.90Å. The work function of spectrometer was 7.2 eV and the kinetic energy of measured electron was 802.1 eV. (Given: $h = 6.626 \times 10^{-34}$ J.s, $C = 3 \times 10^8$ m/s)

SECTION-II

Q3) Attempt any four of the following:

[20]

- a) Write note on ³¹P and ¹⁹F in the field of biochemistry.
- b) Explain the following term:
 - i) Coupling constant in NMR spectroscopy.
 - ii) Solvent used in NMR spectroscopy.
- c) Write note on nuclear Overhauser effect.
- d) Calculate energy of radiation that is required for excitation in each of the following two allowed transitions for a ¹⁴N nucleus if applied field has flux density of 10,000 G. [For N, μ = 0.40357, m_I = 1, β = 5.0505×10⁻³¹ J/G, I = 1].
- e) Determine the ratio of the number of ¹⁹F nuclei in the upper energetic level to lower energetic level at 25°C in a magnetic field with flux density of 15,000 G [μ = 2.6272, I = $\frac{1}{2}$, β = 5.0505 × 10⁻³¹J/G, k = 1.381×10⁻²³J/k].
- **Q4)** Attempt any **four** of the following:

[20]

- a) Explain the following term in ESR.
 - i) g-factor
 - ii) hyperfine splitting
- b) Write note on magic T.
- c) Explain principle of ESR. Explain Instrumentation used in ESR.
- d) With suitable example give any two applications of ESR.
- e) If a resonance was observed for an unpaired electron at a magnetic flux density of 0.33T and frequency of 9.5 GHz. Calculate 'g' factor for unpaired electron.

(Given : $h = 6.626 \times 10^{-34} Js$, Be = $9.285 \times 10^{-24} J/T$).