Total No. of Questions : 6]

P2025

[4923] - 415

SEAT No. :

[Total No. of Pages : 3]

[4923] - 415 M.Sc. - II

ANALYTICAL CHEMISTRY

CHA - 490 : Analytical Spectroscopy (2013 Pattern) (Semester - IV)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate Answer books.
- 2) All Questions are compulsory.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of logarithmic table/Non programmable calculator is allowed.

SECTION - I

Q1) Answer the following questions:

[10]

- a) Explain the term electron shakeup and electron shakeoff.
- b) Give the application of ESCA.
- c) Draw the schematic diagram of X-ray tube.
- d) Distinguish between flat crystal monochromator and curved crystal monochromator.
- e) What are the limitation of human eyes? How it overcome by X-ray microscopy?

Q2) Attempt any two of the following:

[10]

- a) What is Bremsstrahlung? Draw and explain the typical X-ray absorption spectrum.
- b) Draw the schematic diagram showing the essential components of ESCA. How the beam of electron is analysed with the help of magnetic field?

- c) What is TEM? Discuss the construction and working of TEM.
- d) The time was recorded for the copper analyte and the Standard to yield a detector count of 7500 by X-ray fluorescence. The 100 ppm standard reached 7500 counts in 29.3 s and the analyte reached the count in 15.8 s. Determine the concentration of copper in the analyte.

Q3) Attempt any one of the following:

[5]

- a) Explain with schematic diagram the difference between the wavelength dispersive and Energy dispersive X-ray fluorescence.
- b) The 1 's' electron of Na ion has binding energy of 1072.0 eV. Estimate the work function of electron spectrometer if incident radiation is the K_{α} line of magnesium and kinetic energy of measured electron is 176.7eV.

[Given : Plancks constant = 6.625×10^{-34} Js. λ for MgK_{α} = 1.89 $\overset{\circ}{A}$].

SECTION - II

Q4) Answer the following questions:

[10]

- a) What is luminescences? Enlist the different type of luminescences.
- b) Define and explain luminescences efficiency.
- c) Explain the term-E-type delayed fluorescence and p-type delayed fluorescence.
- d) Enlist the various solvent used in NMR.
- e) Why TMS is used as reference in NMR?

Q5) Attempt any two of the following:

[10]

- a) What is chemiluminescence? Explain the phenomenon of electrochemiluminescence.
- b) Discuss the qualitative and quantitative analysis of NMR spectroscopy.

- c) Draw labled diagram of a instrument used to measure photoluminescences and discuss its major components.
- d) The ¹H NMR of a compound with empirical formula $C_5H_{10}O_2$ shows doublet at δ 1.2, singlet at δ 2.0, and multiplet at δ 5.0. The integration of each peak shows δ : 3 : 1 ratio respectively. Identify the compound.

Q6) Attempt any one of the following:

[5]

- a) What is 2-D NMR? Explain in brief HETCOR and COSY.
- b) The standard addition technique was used for the fluorometric assay of a Al^{3+} sample. From the data listed in the table, calculate the concentration of Al^{3+} in the sample.

Added Conc ⁿ (mM)	Fluorescence
of Al ³⁺	Intensity
0	3.8
1.20	5.5
2.50	7.2
4.04	9.5
6.00	12.2
7.50	14.3

