Total No. of	f Questions	:5]
--------------	--------------------	-----

P1460

SEAT No. :			
[Total	No. of Pages	:	<u>-</u> 3

[5223]-31

M.Sc.

PHYSICAL CHEMISTRY

CH - 310 : Quantum Chemistry & Solid State Chemistry (2008 Pattern) (Semester - III) (Old)

Time: 3 Hours

[Max. Marks: 80

Instructions to the candidates:

- 1) Answers to the TWO sections should be written in SEPARATE answer books.
- 2) ALL questions are COMPULSORY.
- 3) Figures to the RIGHT SIDE indicate FULL marks.
- 4) Use of logarithmic table, calculator is ALLOWED.
- 5) Neat diagrams must be drawn WHEREVER necessary.

Physico - Chemical Constants

1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k	===	$1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$
			=	$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h	==	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	e	=	$4.803 \times 10^{-10} \text{ esu}$
			=	$1.602 \times 10^{-19} \mathrm{C}$
5.	1 eV		=	23,06 k cal mol ⁻¹
			_	$1.602 \times 10^{-12} \text{ erg}$
			=	$1.602 \times 10^{-19} \mathrm{J}^{-1}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R	=	$8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
	•		=	8.314 J K ⁻¹ mol ⁻¹
			=	1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	=	96487 C equiv ¹
8.	Speed of light	c	=	$2.997 \times 10^{10} \text{ cm s}^{-1}$
			=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	1 cal		=	$4.184 \times 10^7 \text{erg}$
			==	4.184 J
10.	1 amu		=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β	=	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β_n	=	$5.051 \times 10^{-27} \mathrm{J} \mathrm{T}^{-1}$
	Mass of an electron	m		$9.11 \times 10^{-31} \text{ kg}$
		c		

SECTION - I

Q1) Attempt any four of the following:

[20]

- a) Show that the wave functions for a particle in a one dimensionel box are orthogonal
- b) Formulate the Hamiltonian operators for
 - i) He atom
 - ii) H₂ molecule
 - iii) H_2^+ ion
- c) Explain the properties of quantum mechanical operators.
- d) Explain the historical origin of quantum theory.
- e) Deduce the eigenvalues for $\sin x$, $\cos x$, $\sin x + \cos x$ when $\frac{d^2}{dx^2}$ is the operator, in the cases where possible.
- f) Find term symbols for the ground state configuration of He and C atoms.

Q2) Attempt any four of the following:

[20]

- a) State and prove the variation theorem.
- b) Obtain an expression of the ground state energy of He atom using first order perturbation theory.
- c) Distinguish between variation and perturbation theories.
- d) Deduce the Secular equation for butadiene and state the energies of the first two excited states.
- e) Write a note on Hückel's approximations.
- f) Derive the expression for the first order perturbation correction to the wave function for a non-degenarate system.

SECTION - II

Q3) Attempt any three of the following:

[15]

- a) Write a note on p-n junction.
- b) State and explain the Kirkendall effect.
- c) What is a colour centres? Explain the origin of Colour centres in halide crystals.
- d) Define defects. Describe the various types of point defects found in crystalline solids.
- e) Discuss the conditions for crystal grouth from a moltan salt.

Q4) Attempt any three of the following:

[15]

- a) Derive the expression for the number of Schottky defects present in a crystal at a given temperature.
- b) Describe any one experimental method adopted to study the kinetics of decomposition of a single solid.
- c) Discuss the mechanism of diffusion in crystalline solids.
- d) Write a note on Brillouin zones.
- e) Discuss the factors that affect the progress of a chemical change in solid -solid reactions.

Q5) Solve any two of the following:

[10]

- a) The number of free electrons in a monovalent crystal is 10^{19} per cm³ at 300K. Evaluate E₀ in eV.
- b) Calculate the drift mobility of charge carrier for semiconductor having donor concentration of 10^{22} per metre cube. [Given: Conductivity = 100 mhos m⁻¹]
- c) Calculate the mean free time for an electron in semiconductor crystal having drift mobility 625 cm²/ Volt. Sec.

