Total No. of Questions	š :5	
-------------------------------	------	--

P	1	8	4	9
---	---	---	---	---

SEAT No.:	
-----------	--

[Total No. of Pages: 3

[5323]-31 M.Sc.-II

PHYSICAL CHEMISTRY

CH-310: Quantum Chemistry & Solid State Chemistry (2008 Pattern) (Semester-III) (Old)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Answer to the TWO sections should be written in SEPARATE answer books.
- 2) All questions are COMPULSORY.
- 3) Figures to the RIGHT SIDE indicate full marks.
- 4) Use of logarithmic table, calculator is ALLOWED.
- 5) Neat diagrams must be drawn WHEREVER necessary.

Physico-Chemical Constants

1)	Avogadro Number	$N = 6.022 \times 10^{23} \text{ mol}^{-1}$
2)	Boltzmann Constant	$k = 1.38 \times 10^{-16} \text{erg K}^{-1} \text{molecule}^{-1}$
		$= 1.38 \times 10^{-23} \text{JK}^{-1} \text{molecule}^{-1}$
3)	Planck Constant	$h = 6.626 \times 10^{-27} \text{ erg s}$
		$6.626 \times 10^{-34} \mathrm{Js}$
4)	Electronic Charge	$e = 4.803 \times 10^{-10} \text{ esu}$
5)	1 eV	$= 1.602 \times 10^{-19} \mathrm{C}$
		$= 23.06 k cal mol^{-1}$
		$= 1.602 \times 10^{-12} \mathrm{erg}$
		$= 1.602 \times 10^{-19} \mathrm{J}$
		$= 8065.5 \text{ cm}^{-1}$
6)	Gas Constant	$R = 8.314 \times 10^{-7} erg K^{-1} mol^{-1}$
		$= 8.314 \text{ JK}^{-1}\text{mol}^{-1}$
		$= 1.987 \text{ cal } \text{K}^{-1} \text{mol}^{-1}$
7)	Faraday Constant	$F = 96487 \text{ equiv}^{-1}$
8)	Speed of light	$c = 2.997 \times 10^{10} \text{ cm s}^{-1}$
		$= 2.997 \times 10^8 \text{ cm s}^{-1}$
9)	1 cal	$=4.184 \times 10^7 \text{ erg}$
		= 4.184 J
10)	1 amu	$= 1.673 \times 10^{-27} \text{ kg}$
11)	Bohr magneton	$\beta_e = -9.274 \times 10^{-24} \mathrm{J} \mathrm{T}^{-1}$
12)	Nuclear magneton	$\beta_{\rm p} = 5.051 \times 10^{-27} \rm J T^{-1}$
		11

13) Mass of an electron

$$m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$$

SECTION-I

Q1) Attempt any four of the following:

[20]

- a) Explain the properties of ladder operators
- b) Formulate the energy operators for H₂ molecule and H₂ ion
- c) Show that $\left[\hat{L}_x,\hat{L}_z\right] = -i\hbar\hat{L}_y$ for a set of angular momentum operators \hat{L}_x,\hat{L}_y and \hat{L}_z .
- d) Which of the following functions are eigen functions of the operator $\frac{d^2}{dx^2}$?
 - i) $\sin 4x$
 - ii) $\cos 3x$
 - iii) x^{-3}

Give the corresponding eigen values.

- e) State and prove the variation theorem.
- f) State the fundamental postulates of quantum mechanics.

Q2) Attempt any four of the following:

[20]

- a) Discuss Huckel's 4m+2 rule citing benzene and cyclo-octatetraene as examples.
- b) Comment giving examples on the positive or negative nature of REPE value for a molecule.
- c) Give the comparison between perturbation and variation methods.
- d) Deduce the secular determinant for ethene and Obtain the HMO energy values for molecule.
- e) How Hess and schaad improved Huckel's calculations for M.O. energies?
- f) Derive the expression for the first order correction to the energy of the

SECTION-II

Q3) Attempt any three of the following:

[15]

- a) Derive the expression for the Frenkel defects in a crystal at a given temperature.
- b) Comment on the effect of temperature on carrier density and conductivity of n-type extrinsicsemiconductor.
- c) Write a note on-mechanism of a photographic process.
- d) Discuss the mechanism of diffusion in crystalline solids.
- e) Distinguish between the resistivities of annealed and on annealed Cu-Au alloys.

Q4) Attempt any three of the following:

[15]

- a) State and explain the various methods of electric breakdown in insulators.
- b) Explain the parabolic rate low used to explain the mechanism of gassolid reactions.
- c) The fast growing faces are eliminated whereas slow growing faces persist in a crystal, prove this statement on the basis of geometrical considerations.
- d) Write a note on: Taylor-Orowan dislocations.
- e) Define 'Colour centre' and explain the fermation of F and V colour centres in crystal.

Q5) Solve any two of the following:

[10]

- a) Calculate the dislocation density for a cubic crystal having 10^{-6} cm edge length and total dislocation length of 10^{-12} cm.
- b) Calculate the number of electrons per cm³ in the conduction band of semiconductor having a bandgap of 0.72 eV at 27°C.
- c) If 2 eV is the energy required for the pair of ions to move from the crystal's interior to the surface, What is the proportion of vacancies (n/N) present at 400K?

