Total No.	of Questions	:	6]
-----------	--------------	---	------------

P287	70
------	----

SEAT No:	

[5023]-301

[Total No. of Pages : 3

M.Sc. PHYSICAL CHEMISTRY

CHP-310: Quantum Chemistry and Solid State Chemistry (2013 Pattern) (Semester - III) (New)

Time: 3Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic table, calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	\mathbf{k}		1.38 × 10 ⁻¹⁶ erg K ⁻¹ molecule ⁻¹
				$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h	=	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	е	=	$4.803 \times 10^{-10} \text{ esu}$
			=	$1.602 \times 10^{-19} \mathrm{C}$
5.	1 eV		==	23.06 k cal mol ⁻¹
			_	$1.602 \times 10^{-12} \text{ erg}$
			=	$1.602 \times 10^{-19} \text{J}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R	=	$8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
			=	8.314 J K ⁻¹ mol ⁻¹
			=	1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	= '	96487 C equiv ⁻¹
8.	Speed of light	Ċ	=	$2.997 \times 10^{10} \text{ cm s}^{-1}$
			=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	l cal		= .	$4.184 \times 10^7 \text{ erg}$
			==	4.184 J
10.	1 amu		=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β	=	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton			$5.051 \times 10^{-27} \mathrm{J} \mathrm{T}^{-1}$
13.	Mass of an electron	- 11		$9.11 \times 10^{-31} \text{ kg}$

P.T.O.

SECTION -I

Q1) Attempt precisely the following:

[10]

- a) State the condition for the acceptable wave function.
- b) Define Hermitian operator giving example.
- c) Explain, what is term symbol?
- d) Are the following operators meet the requirements for a quantummechanical operator that is to represent a physical quantity: i) $\frac{d^2}{dx^2}$ and

ii)
$$i \left(\frac{d}{dx} \right)$$
? Why?

e) Write the Schrodinger time - dependent equation. State the significance of the terms involved in it.

Q2) Attempt any two of the following:

[10]

- a) Apply the variation method to the system of He atom to calculate its energy.
- b) Construct the Hamiltonian operator for Be⁺² ion in atomic units. State the terms involved in it.
- c) Show that $[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$ for a set of angular momentum operators \hat{L}_x, \hat{L}_y and \hat{L}_z .
- d) Explain Hückel approximations. What is their need?

Q3) Attempt any one of the following:

[5]

- a) If $g = \hat{A}F$, find g for each of the following choices of \hat{A} and F.
 - i) $\hat{A} = \frac{d}{dx}$ and $F = \cos(x^2+1)$
 - ii) $\hat{A} = 5$ and $F = \sin x$
 - iii) $\hat{A} = ()^2$ and $F = \sin x$
 - iv) $\hat{A} = \frac{d^2}{dx^2}$ and $F = \ln 3x$

$$v) \quad \hat{A} = \exp \text{ and } F = \ln x$$

b) Sketch the MO's for butadiene on the basis of HMO theory. Deduce the energies of these orbitals on the basis of secular determinant.

SECTION -II

Q4) Attempt precisely the following:

[10]

- a) Write the equation for Frenkel defects and explain the terms involved in it.
- b) State the third power law of Debye for solids.
- c) Define induction period for the decomposition reaction of a single solid.
- d) What is Van-Arkel process?
- e) Give steps in the photographic process.

Q5) Attempt Any Two of the following:

[10]

- a) Discuss the mechanism of diffusion in solids.
- b) Explain the mechanism of the following solid-solid reactions:
 - i) $MgO(s)+Al_2O_3(s) \rightarrow MgAl_2O_4(s)$
 - ii) $AgCl(s)+NaI(s) \rightarrow AgI(s)+NaCl(s)$
- c) State and explain Kirkendall effect.
- d) What is a colour centre? Explain the origin of colour centers in halide crystals.

Q6) Attempt any one of the following:

[5]

- a) How deep will Aluminium penetrate in silicon at 1450°C in one hour? [Given : \triangle H=73 Kcal/mole, D_o =1.55 cm²/s]
- b) A certain alkali halide(A^+X^-) with molecular weight 74.6 has the NaCl structure. If the interionic distance A^+-X^- is 0.32nm, calculate the density of the salt for the 0.1% Frenkel defects.

