Total No.	of Questions	:	5]
-----------	--------------	---	----

SEAT No. :	
------------	--

[Total No. of Pages: 3

P1852

[5323]-34 M.Sc. - II

PHYSICAL CHEMISTRY

CH-314: Polymer Chemistry

(2008 Pattern) (Semester - III) (Old)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic table / calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

	1 11 5100	CHCHIIC	our Ct	<u> </u>
1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k	=	$1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$
			=	$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h	=	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	e	=	$4.803 \times 10^{-10} \text{ esu}$
			=	$1.602 \times 10^{-19} \mathrm{C}$
5.	leV		=	23.06 k cal mol ⁻¹
			=	$1.602 \times 10^{-12} \text{ erg}$
			=	$1.602 \times 10^{-19} \text{ J}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R	=	$8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
			=	$8.314~J~K^{-1}~mol^{-1}$
			=	$1.987 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$
7.	Faraday Constant	F	=	96487 C equiv ⁻¹
8.	Speed of light	c	=	$2.997 \times 10^{10} \text{ cm s}^{-1}$
			=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	1 cal		=	$4.184 \times 10^7 \text{erg}$
			=	4.184 J
10.	1 amu		=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	$\beta_{\rm e}$	=	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β_n	=	$5.051 \times 10^{-27} \text{ J T}^{-1}$
13.	Mass of an electron	me	=	$9.11 \times 10^{-31} \text{ kg}$
		C		

SECTION - I

Q1) Attempt any three of the following:

[15]

- a) Define and explain secondary fond forces in a polymer.
- b) Define polydispersity index with a sketch.
- c) What is instantaneous polymer composition?
- d) Discuss elastomes forming properties of a polymer.
- e) Write a note on Zeigler-Natta Catalyst.

Q2) Attempt any three of the following:

[15]

- a) Discuss what is glass transition temperature.
- b) Write a note in block and graft co-polymer.
- c) Describe the kinetics of condensation polymer.
- d) Derive the rate equation for step polymerization in the presence of a catalyst.
- e) Distinguish between homopolymers and heteropolymers.

Q3) Solve any two:

[10]

a) Find the viscosity of a polymer having C = 0.4 g/dl Huggin constant = 0.33.

$$K = 1.2 \times 10^{-4} \ \alpha = 0.73 \ m = 1.2 \times 10^{5}$$

b) The relative viscosities of a fraction of polystyrene of $\overline{M}_n = 275000$, in teralin at 20°C were

% conc 0.01 0.05 0.10 0.25
$$\eta_r$$
 1.05 1.25 1.59 2.70

Find α .

c) 3 moles of 1, 3 butadiene and 2 moles of vinylchloride are co-polymerized. Find polymar composition at 8.8: 0.035 reactivity ratios respectively.

[At. wts :
$$C = 12 H = 1 Cl = 35.5$$
]

SECTION - II

Q4) Attempt any four of the following:

[20]

- a) Distinguish between condensation and addition polymers.
- b) Discuss the membrane osmometry technique.
- c) Describe compression molding.
- d) Write a note on melt spinning.
- e) Discuss the use of DTA in polymer analysis. Compare it with IR as an analytical tool.
- f) How is reinforced plastic made?

Q5) Attempt any four of the following:

[20]

- a) Describe the process of Calendering.
- b) Write a note on XRD use in polymer analysis.
- c) Discuss the effects of radiation exposure on polymers.
- d) Describe the process of dying a fibre.
- e) Explain what are conducting polymers.
