P1997

SEAT No.:	
-----------	--

[Total No. of Pages :3

[4923] - 304 M.S.C.

PHYSICAL CHEMISTRY

CHP - 313: Polymer Chemistry

(Semester - III) (2013 Pattern)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic table and calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

Ι.	Avogadro Number	N =	$= 6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k =	$= 1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$
			= $1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h =	$= 6.626 \times 10^{-27} \text{ erg s}$
	•	=	$= 6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	e =	$= 4.803 \times 10^{-10} \text{ esu}$
		=	$= 1.602 \times 10^{-19} \mathrm{C}$
5.	1 eV		= 23.06 k cal mol ⁻¹
		=	$= 1.602 \times 10^{-12} \text{ erg}$
		<u></u>	$= 1.602 \times 10^{-19} \text{ J}$
		==	= 8065.5 cm ⁻¹
6.	Gas Constant		$= 8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
			= 8.314 J K ⁻¹ mol ⁻¹
			= 1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F =	96487 C equiv ⁻¹
8.	Speed of light	c =	$= 2.997 \times 10^{10} \text{ cm s}^{-1}$
		=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	l cal	****	$4.184 \times 10^7 \text{erg}$
		==	4.184J
10.	1 amu	=	1.673 × 10 ⁻²⁷ kg
11.	Bohr magneton	$\beta_c =$	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	$\beta_n =$	$5.051 \times 10^{-27} \text{ J T}^{-1}$
13.	Mass of an electron	$m_e =$	$9.11 \times 10^{-31} \text{ kg}$

SECTION - I

Q1)	Atte	mpt the following: [1	0]
	a)	Define 'living polymer'.	
	b)	Explain 'degree of polymerization.	
	c)	Compare homo and hetero chain polymers.	
	d)	Define glass transition temperature.	
	e)	Define polydispersity index.	
Q2)	Atte	mpt any two of the following: [1	0]
	a)	Explain why a 100% crystalline polymer cannot be made.	
	b)	Write a note on Ziegler - Natta catalyst.	
	c)	Deduce the rate equation in step polymerization in the presence of catalyst.	f a
	d)	Explain the Flory theory for polymer solutions.	
Q3)	Atte	mpt any one of the following:	[5]
	a)	Calculate the viscosity of a polymer given,	

C = 0.4 g/dl, Huggins constant = 0.33 $k = 1.2 \times 10^{-4}, \qquad \alpha = 0.2 \qquad M = 120000$

b) Compare Voigt and Maxwell models of polymer viscoelasticity.

SECTION - II

Q4)	Atte	mpt the following: [1	0]
	a)	State the principle of ultracentrifugation.	
	b)	Define vulcanization.	
	c)	Explain reinforcement. Give its advantages.	
	d)	State the SI unit of viscocity.	
	e)	Give two applications of conducting polymers.	
Q5)	Attempt any two of the following:		
	a)	Write a note on determination of molecular weight of a polymer by lig scattering.	ght
	b)	Give an accout of extrusion molding.	
	c)	Define calendering, wet spinning and dry spinning.	
	d)	Discuss the effects of radiation on polymers.	
Q6)	Atte	mpt any one of the following:	[5]
	a)	Write a note on XRD analysis of polymers.	
	b)	Discuss DTA in polymer analysis.	

લ્ક્સ્પ્રહ્મ્સ