SEAT No.	•
----------	---

P1384 [Total No. of Pages : 3

[5123]-303

M.Sc. (Semester III)

PHYSICAL CHEMISTRY

CHP - 312: Physico-Chemical Methods of analysis

(2013 Pattern) (New)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic table calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

Avogadro Number	$N = 6.022 \times 10^{23} \text{mol}^{-1}$
Boltzmann constant	$K = 1.38 \times 10^{-16} erg K^{-1} molecule^{-1}$
	$= 1.38 \times 10^{-23} \text{JK}^{-1} \text{molecule}^{-1}$
Planck constant	$h = 6.626 \times 10^{-27} \mathrm{erg} \mathrm{s}$
	$= 6.626 \times 10^{-34} \mathrm{J s}$
Electronic charge	$e = 4.803 \times 10^{-10} esu$
	$= 1.602 \times 10^{-19} \text{ C}$
1 e V	$= 23.06 \text{ k cal mol}^{-1}$
	$= 1.602 \times 10^{-12} \text{ erg}$
	$= 1.602 \times 10^{-19} \mathrm{J}$
	$= 8065.5 \text{ cm}^{-1}$
Gas constant	$R = 8.314 \times 10^7 \text{ergk}^{-1} \text{mol}^{-1}$
	$= 8.314 \text{Jk}^{-1} \text{mol}^{-1}$
	$= 1.987 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$
Faraday constant	$F = 96487 \text{ C equiv}^{-1}$
Speed of light	$c = 2.997 \times 10^{10} \mathrm{cm} \mathrm{S}^{-1}$
	$= 2.997 \times 10^8 \text{ m s}^{-1}$
1 cal	$= 4.184 \times 10^7 \text{erg}$
	= 4.184 J
1amu	$= 1.673 \times 10^{-27} \text{kg}$
Bohr magneton	$\beta_{\rm e} = -9.274 \times 10^{-24} \rm J T^{-1}$
Nuclear magneton	$\beta_{\rm n}^{\rm s} = 5.051 \times 10^{-27} {\rm J} {\rm T}^{-1}$
Mass of an electron	$M_e = 9.11 \times 10^{-31} \text{ kg}$
	Boltzmann constant Planck constant Electronic charge 1 e V Gas constant Faraday constant Speed of light 1 cal 1amu Bohr magneton Nuclear magneton

SECTIONS - I

Q1) Answer precisely the following.

[10]

- a) Explain the ways by which an excited ion relax in ESCA technique.
- b) Draw a neat labelled diagram of an ESCA spectrometer.
- c) What is meant by EXAFS? Give two applications of x-ray absorption.
- d) Calculate the short wavelength cut off the lamp when an accelerating potential in an x-ray tube is 15.5 kv.
- e) Explain the term thermal analysis. enlist the various methods of thermal analysis.
- Q2) Answer any two of the following.

[10]

- a) What is x-ray fluorescence? Draw a neat labelled diagram of wavelength-dispersive and energy -dispersive instrument used for fluorescence.
- b) Explain spectral splitting and chemical shift observed in ESCA technique.
- c) Discuss the applications of DSC technique.
- d) Describe the cylindrical mirror analyzer used in ESCA spectrometer.
- Q3) Solve any one of the following.

[5]

- a) Gypsum showed mass loss of about 15 % of original sample mass due to complete dehydration at 170°C. Determine the number of water molecules present in gypsum.
 - (Given : Atomic weight of Ca = 40, s = 32, o = 16, H = 1)
- b) Calculate the wavelength of x-ray photon in nanometer that was used to create inner shell vacancy in fluorine.
 - Given: ϕ of the spectrometer = 4.71 eV, k.E. of electron = 799v and B.E. for f = 696 eV.

SECTION - II

Q4) Attempt precisely the following

[10]

- a) Define singlet state, doublet state and triplet state.
- b) State the characteristics of plasma.
- c) State the principle of voltommetry.
- d) Write the equation for limiting current an hydrodynamic voltammetry. Explain the terms in it.
- e) What are the fundamental requirement to perform coulometric titrations?

Q5) Answer any two of the following

[10]

- a) Explain liquid phase chemiluminescence titration with a typical example.
- b) Draw a neat labelled diagram of a typical plasma and show different temperature zone in it.
- c) Describe controlled potential coulometry.
- d) What is polarizable electrode? Describe different electrodes used in voltammetry.

Q6) Solve any one of the following

[5]

- a) An electro active species yielded wave with a limiting current 25.5 μ A at the rotating disc electrode which was rotated at 20.0 r/s. What limiting current would be expected at 50 r/s?
- b) Constant current coulometry was used to assay a solution containing Fe⁺². To ensure 100% current efficiency, the assay was performed in 0.1m Ce⁺³ acidic solution at the end point of tilration 30ml sample, a controlled current of 6.45 mA had flowed for 185 second. Calculate the concentration of Fe⁺² in the sample.

