| Total | No. | of | Questions | : | 6] |
|-------|-----|----|-----------|---|----|
|-------|-----|----|-----------|---|----|

|               | _   |    |
|---------------|-----|----|
| $\mathbf{D1}$ | - 4 | 47 |
| $\mathbf{P}$  | 4   | nz |
|               | _   | V  |

| SEAT No.: |  |
|-----------|--|
|-----------|--|

[Total No. of Pages: 3

# [5223]-33 M.Sc. - II

#### PHYSICAL CHEMISTRY

# CH-312: Advanced Instrumental Methods of Analysis (2008 Pattern) (Semester - III)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic table and calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

#### **Physico-Chemical Constants**

| 1.  | Avogadro Number     | N               | $= 6.022 \times 10^{23} \text{ mol}^{-1}$                         |
|-----|---------------------|-----------------|-------------------------------------------------------------------|
| 2.  | Boltzmann Constant  | k               | = $1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$ |
|     |                     |                 | = $1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$   |
| 3.  | Planck Constant     | h               | $=6.626 \times 10^{-27} \text{ erg s}$                            |
|     |                     |                 | $= 6.626 \times 10^{-34} \text{ J s}$                             |
| 4.  | Electronic Charge   | e               | $=4.803 \times 10^{-10} \text{ esu}$                              |
|     |                     |                 | $= 1.602 \times 10^{-19} \text{ C}$                               |
| 5.  | 1 eV                |                 | = 23.06 k cal mol <sup>-1</sup>                                   |
|     |                     |                 | $= 1.602 \times 10^{-12} \text{ erg}$                             |
|     |                     |                 | $= 1.602 \times 10^{-19} \text{ J}$                               |
|     |                     |                 | $= 8065.5 \text{ cm}^{-1}$                                        |
| 6.  | Gas Constant        | R               | $= 8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$         |
|     |                     |                 | $= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$                       |
|     |                     |                 | $= 1.987 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$             |
| 7.  | Faraday Constant    | F               | = 96487 C equiv <sup>-1</sup>                                     |
| 8.  | Speed of light      | c               | $= 2.997 \times 10^{10} \text{ cm s}^{-1}$                        |
|     |                     |                 | $= 2.997 \times 10^8 \text{ m s}^{-1}$                            |
| 9.  | 1 cal               |                 | $=4.184 \times 10^7 \text{ erg}$                                  |
|     |                     |                 | = 4.184 J                                                         |
| 10. | 1 amu               |                 | $= 1.673 \times 10^{-27} \text{ kg}$                              |
| 11. | Bohr magneton       | $\beta_{\rm e}$ | $= -9.274 \times 10^{-24} \text{ J T}^{-1}$                       |
| 12. | Nuclear magneton    | $\beta_n$       | $= 5.051 \times 10^{-27} \text{ J T}^{-1}$                        |
| 13. | Mass of an electron | $m_{e}$         | $= 9.11 \times 10^{-31} \text{ kg}$                               |

#### **SECTION-I**

#### Q1) Answer any three of the following:

[15]

- a) How are X-rays generated? Describe the construction and working of an X-ray tube with a neat labelled diagram.
- b) What is gas ionization detector? Describe various regions observed in gas ionization detector.
- c) Explain liquid-phase chemiluminescence titration with typical example.
- d) Discuss the principle of NAA. What are its advantages and disadvantages?
- e) Discuss in brief the applications of mass spectrometry.

#### Q2) Answer any three of the following.

[15]

- a) Discuss the choice of post irradiation assay in activation analysis technique.
- b) Define soft ionization method. Describe any one method of soft ionization.
- c) Draw and explain block diagram of the major components of an instrument used to measure photoluminescence.
- d) Write a note on X-ray fluorescence.
- e) Write a note on excitation function.

# *Q3*) Solve any two of the following.

[10]

- a) The ionization energy of argon atom is 9.6×10<sup>-18</sup> J. The argon gas is irradiated by X-ray photon in ionization chamber having wavelength of 1nm. How many ion-electron pairs will be formed by considering 40% efficiency of ionization.
- b) 0.5g of steel sample containing vanadium was irradiated for seven minutes in a neutron flux of 10<sup>7</sup> ncm<sup>-2</sup>s<sup>-1</sup>. Activity at the end of irradiation was found to be 2460 dpm. Find the percentage of vanadium in steel.

[Given: 
$$t_{1/2}$$
 of  $^{52}$ V = 3.75 min, r = 99.75%,  $\sigma$  = 4.88b]

c) A magnet has a field strength of 0.19T. The radius of curvature of the ion path is 10.4cm. Determine the accelerating voltage required to direct a singly charged water molecule through an exit slit of the mass spectrometer.

#### **SECTION-II**

# Q4) Answer any three of the following.

[15]

- a) What is the basic difference between DSC and DTA?
- b) With a neat labelled diagram explain sample introduction in ICP spectrometer.
- c) Discuss the applications of ESCA technique.
- d) What is plasma? Explain briefly the principle underlying inductively coupled plasma atomic emission spetroscopy.
- e) Define the term, 'quantum efficiency'( $\phi$ ). Derive the relation,  $I_L = \phi I_0 2.303$  a.b.c

# Q5) Answer any three of the following.

[15]

- a) Give an account of general technique for performing a coulometric determination at controlled cathode potential?
- b) Discuss current-voltage relationship in coulometric technique.
- c) Enlist the properties of the ideal instrument for plasma emission spectroscopy.
- d) Write a note on pulse voltammetry.
- e) Discuss the applications of TGA technique.

# Q6) Solve any two of the following.

[10]

- a) A thermogram of a magnesium compound showed a loss of 80mg from a total of 160mg used for analyte. Identify the compound as MgO,  $MgCO_3$  or  $MgC_2O_4$ .
- b) Nickel ore weighing 2.15g is dissolved in acid and the nickel is electrolysed using constant current of 1.8A for 10 minutes. Calculate the percentage of nickel ore. [At. wt. of Ni = 58.7]
- c) Calculate geometrical cross-section for copper atom.

[Given : 
$$R_0 = 1.4 \times 10^{-13}$$
 cm, Atomic wt. of Cu = 63]

