Total No.	of Q	uestions	:	6]
-----------	------	----------	---	------------

SEAT No. :

[Total No. of Pages: 5

P1392

[5123]-311 M.Sc. - II

ORGANIC CHEMISTRY

CHO - 351 : Spectroscopic Methods in Structure Determinations. (2014 Pattern) (Semester - III) (4 - Credits)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Answer to the two sections to be written on two separate answer books.
- 3) Figures to the right indicate full marks.

SECTION - I

Q1) Answer any four of the following:

[8]

- a) $C_3H_6O_2$ shows two singlets of same intensities in its NMR at 2.3 & 4.08 ppm. What is its probable structure.
- b) A compound shows Mt at 84 and base peak at 56 its PMR shows single peak at 1.4δ ppm. Assign the correct structure.
- c) A compound with a molecular formula C₆H₈ shows only two signals inits ¹³C-NMR. DEPT shows presence of CH & CH₂ assign probable structure.
- d) Arrange the following compounds in decreasing order of Jvicinal. Justify your order.

e) Distinguish the following Pairs by indicated spectroscopic methods.

P.T.O.

Q2) Answer any three of the following:

[12]

a) C₇H₁₄O has two isomeric ketones whose PMR and CMR Signals are shorceu below assign the structures to each of the ketones from data provided.

i) PMR: 1.2 d (12 mm), 28(septet, 2mm

CMR: 18 (str), 38(m), 214(w)

ii) PMR: 1.0 s(9mm) 2.2 s(3mm) 2.31 (2mm)

CMR: 30(str), 32(w), 34(w), 56(m) 210(w).

b) A compound $C_6H_{10}O_2$ exhibits the following spectral data. Analyse the signals and arrive at a consistant structure. Justify your assignment.

CMR: 12(q); 13(q); 22(t); 127(s); 147(d) 174(s)

PMR : 1.17 t 7.5Hz 3H; 1.85d, 1.5Hz 3H; 2.2(dq. 7.5 & 6.3Hz 2H;

6.9, tq 1.5 & 6.3Hz 1H; 12.7 bs 1H

c) A compound with M+ 100 shows the following spectral data. Analyse the data systematicallyant arrive at a structure based on your analysis.

MS(M/z): 100, 85, 71, 56, 44

CMR : 13(q); 20(t); 32(t); 68(t); 86(t); 152(d)

PMR : 1.0 t 7 Hz gmm; 14 m 6mm;

1.6 m 5.8 mm; 3.7 t 7Hz 6 mm

4.0 dd 9 & 2Hz 3 mm;

4.1 dd 13 & 2Hz 3 mm

6.5 dd 13 & 9 Hz 3 mm

Cosy : $6.5 \leftrightarrow 4.0, 4.1$

1.0 1.4

1.4 1.0, 1.6

1.6 1.4, 3.7

4.0 6.5

4.1 4.0

d) A compound with MF $C_{10}H_{12}O_2$ shows the following spectral data analyse data and arrive at a structure consistant with the data

CMR : 146; 144; 137, 132; 121. 2; 115.5; 114; 111; 56; 40

PMR : 3.3 bd 7Hz 2H; 3.87 S 3H; 4.52 bd 1H exchangeable; 5.03 ddt

17.2 & 1.2 Hz 1H; 5.15 ddt 9.7,2 & 1.2 Hz 1H; 5.95 ddt 17, 9.7 & 6.8 Hz 6.61 dd 8& 2 Hz 1H; 6.68 d 2Hz 1H; 6.85 d 8Hz

1H.

NOE : Irradiate at $6.68 \rightarrow 3.32 \& 3.87$ line intensities increase.

e) Assign the structure to the compound with MF C₉H₁₆O₂

IR : 1740 cm⁻¹

PMR : 0.9 (t, 7.6 Hz 3H); 1.3 (M, 4H); 1.65 (m.2H); 2.32(t 6.7 Hz

2H); 4.58 (d,7.8Hz, 2H); 5.21(d, 10.4Hz 1H); 5.32(d,15.9Hz

1H); 5.92 (ddt 7.8, 10.4 & 15.9 Hz 1H).

CMR : 13.9(q); 22.3(t); 24.7(t) 31.3(t); 34.2(t); 64.9(t); 118(t); 132(d)

and 174(s)

Q3) Assign the signals to various protons in compound . Use decoupling data for the confirmations of the assignments justify your assignments. [5]

1.4 2 S, 3H; 1.95 t 6Hz 2H; 2.55 s 3H; 2.7 t 6 Hz 2H; 2.82 d 6Hz 3H; 2.92 s 1H; 4.12 s 1H; 5.33q 6Hz 1H; 6.37d, 8Hz, 1H; 6.78 dd, 2Hz 1H; 6.87 dd, 8 & 2Hz 1H.

Irradiation Experiments:

- a) Irradiation at 2.97 changes 2.70(t) to singlet
- b) Irradiation at 2.82 changes 5.33(q) to singlet
- c) Irradiation at 6.87 changes 6.37(d) & 6.78 (d) to singlet.

SECTION - II

Q4) Write the short notes on any three.

[9]

- a) Use of lanthanide shift reagents.
- b) Spin decoupling techniques.
- c) Factors affecting germinal coupling.
- d) Double focusing technique in MS.
- e) Use of DEPT & Off. resonance decoupling techniques in CMR.
- **Q5**) Answer any four of the following.

[8]

a) Explain the genesis of ions in the following compounds

- b) Explain in brief a working of electron impact mass spectrometry.
- c) Differentiate the following compounds by MS

d) An amine C₇H₁₅N shows the following ions in MS. Deduce probable structure

M/e:84(100%); 70, 56, 113, 98, 85

- e) Explain the techniques used to arrive at the molecular formula in MS.
- Q6) The spectra of all unknown compound are shown on the adjacent page Analyse the spectra and use to arrive at a correct structure of the unknown. Justify your assingnment.[8]

x x x