\square

ORGANIC CHEMISTRY

CHO - 351 : Spectroscopic Methods in Structure Determinations. (2014 Pattern) (Semester - III) (4 - Credits)

Time : 3 Hours]
[Max. Marks: 50
Instructions to the candidates:

1) All questions are compulsory.
2) Answer to the two sections to be written on two separate answer books.
3) Figures to the right indicate full marks.

SECTION - I

Q1) Answer any four of the following:
a) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ shows two singlets of same intensities in its NMR at $2.3 \& 4.0 \delta$ ppm. What is its probable structure.
b) A compound shows Mt at 84 and base peak at 56 its PMR shows single peak at $1.4 \delta \mathrm{ppm}$. Assign the correct structure.
c) A compound with a molecular formula $\mathrm{C}_{6} \mathrm{H}_{8}$ shows only two signals inits ${ }^{13} \mathrm{C}$-NMR. DEPT shows presence of $\mathrm{CH} \& \mathrm{CH}_{2}$ assign probable structure.
d) Arrange the following compounds in decreasing order of Jvicinal. Justify your order.

e) Distinguish the following Pairs by indicated spectroscopic methods.
a)

Ms
b)

4

by ${ }^{13} C$-NMR

Q2) Answer any three of the following:
a) $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ has two isomeric ketones whose PMR and CMR Signals are shorceu below assign the structures to each of the ketones from data provided.
i) PMR : $1.2 \mathrm{~d}(12 \mathrm{~mm})$, 28(septet, 2 mm

CMR : 18 (str), 38(m), 214(w)
ii) PMR : $1.0 \mathrm{~s}(9 \mathrm{~mm}) 2.2 \mathrm{~s}(3 \mathrm{~mm}) 2.31$ (2mm)

CMR : 30(str), 32(w), 34(w), 56(m) 210(w).
b) A compound $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$ exhibits the following spectral data. Analyse the signals and arrive at a consistant structure. Justify your assignment.

CMR : 12(q); 13(q); 22(t); 127(s); 147(d) 174(s)
PMR : 1.17 t 7.5Hz 3H; 1.85d, 1.5Hz 3H; 2.2(dq. 7.5 \& 6.3Hz 2H; 6.9 , tq $1.5 \& 6.3 \mathrm{~Hz} 1 \mathrm{H} ; 12.7$ bs 1 H
c) A compound with $\mathrm{M}+100$ shows the following spectral data. Analyse the data systematicallyant arrive at a structure based on your analysis.

MS(M/z) : 100, 85, 71, 56, 44
CMR : 13(q); 20(t); 32(t); 68(t); 86(t); 152(d)
PMR : 1.0 t 7 Hz gmm; 14 m 6 mm ;
$1.6 \mathrm{~m} 5.8 \mathrm{~mm} ; 3.7 \mathrm{t} 7 \mathrm{~Hz} 6 \mathrm{~mm}$
4.0 dd 9 \& 2Hz 3 mm;
4.1 dd 13 \& 2Hz 3 mm
6.5 dd 13 \& 9 Hz 3 mm

Cosy $\quad: 6.5 \leftrightarrow 4.0,4.1$
$1.0 \quad 1.4$
$1.4 \quad 1.0,1.6$
$1.6 \quad 1.4,3.7$
$4.0 \quad 6.5$
$4.1 \quad 4.0$
d) A compound with $\mathrm{MF} \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ shows the following spectral data analyse data and arrive at a structure consistant with the data

CMR : 146; 144; 137, 132; 121. 2; 115.5; 114; 111; 56; 40
PMR : 3.3 bd 7Hz 2H; 3.87 S 3H; 4.52 bd 1H exchangeable; 5.03 ddt 17.2 \& $1.2 \mathrm{~Hz} 1 \mathrm{H} ; 5.15$ ddt $9.7,2$ \& $1.2 \mathrm{~Hz} 1 \mathrm{H} ; 5.95$ ddt 17, 9.7 \& 6.8 Hz 6.61 dd $8 \& 2 \mathrm{~Hz} 1 \mathrm{H} ; 6.68 \mathrm{~d} 2 \mathrm{~Hz} 1 \mathrm{H} ; 6.85 \mathrm{~d} 8 \mathrm{~Hz}$ 1 H .

NOE : Irradiate at $6.68 \rightarrow 3.32$ \& 3.87 line intensities increase.
e) Assign the structure to the compound with $\mathrm{MF} \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$

IR : $1740 \mathrm{~cm}^{-1}$
PMR : 0.9 (t, 7.6 Hz 3 H$)$; 1.3 (M, 4H); 1.65 (m.2H); 2.32(t 6.7 Hz $2 \mathrm{H}) ; 4.58$ (d, $7.8 \mathrm{~Hz}, 2 \mathrm{H}) ; 5.21(\mathrm{~d}, 10.4 \mathrm{~Hz} 1 \mathrm{H}) ; 5.32(\mathrm{~d}, 15.9 \mathrm{~Hz}$ 1H); 5.92 (ddt 7.8, 10.4 \& 15.9 Hz 1H).

CMR : 13.9(q); 22.3(t); 24.7(t) 31.3(t); 34.2(t); 64.9(t); 118(t); 132(d) and 174(s)

Q3) Assign the signals to various protons in compound . Use decoupling data for the confirmations of the assignments justify your assignments.
[5]

Irradiation Experiments:
a) Irradiation at 2.97 changes $2.70(\mathrm{t})$ to singlet
b) Irradiation at 2.82 changes $5.33(\mathrm{q})$ to singlet
c) Irradiation at 6.87 changes 6.37 (d) \& 6.78 (d) to singlet.

SECTION - II

Q4) Write the short notes on any three.
a) Use of lanthanide shift reagents.
b) Spin decoupling techniques.
c) Factors affecting germinal coupling.
d) Double focusing technique in MS.
e) Use of DEPT \& Off. resonance decoupling techniques in CMR.

Q5) Answer any four of the following.
a) Explain the genesis of ions in the following compounds
a)
 $198,196,169,167,103$

56,41
b) Explain in brief a working of electron impact mass spectrometry.
c) Differentiate the following compounds by MS

d) An amine $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~N}$ shows the following ions in MS. Deduce probable structure

M/e:84(100\%); 70, 56, 113, 98, 85
e) Explain the techniques used to arrive at the molecular formula in MS.

Q6) The spectra of all unknown compound are shown on the adjacent page Analyse the spectra and use to arrive at a correct structure of the unknown. Justify your assingnment.

C, $36.5 \% ; \mathrm{H}, 10.0 \%$

