SEAT No:	

P 1899

[Total No. of Pages :4

[5323]-312

M.Sc. - II

ORGANIC CHEMISTRY

CHO-352: ORGANIC STEREOCHEMISTRY

(2014 Pattern) (Semester - III) (New) (4 Credits)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Answers to the two sections should be written in separate answer book.

SECTION - I

Q1) Answer the following:

[10]

- a) Cyclopropanone and cyclobutanone prefers to undergo addition reaction than substitution reaction. Explain
- b) Which of the following isomer gets solvolysed Faster and why.

- c) Give two methods of preparation of compounds with bridged ring systems.
- d) What is the difference between uv spectra at paracyclophanes when n = m = 2 and when n = m = 6 and why?
- e) Why β benzene hexachloride reacts more slowly by several powers of 10 than any of its isomers?

Q2) Attempt any two of the following:

[10]

a) Draw all possible conformations of cis and Trans1-Phenyl-2-Aminocyclohexanol and comment on their stability giving reasons.

- b) Explain giving reason the orientation of hydroxyl group during reduction of cyclohexanone by
 - i) Catalytic hydrogenation
 - ii) MPV reduction
 - iii) Reduction with metal hydride.
- c) Write the stable conformation at trans-anti-trans and trans syn trans perhydroanthracene. Calculate their energies and comment on their optical activity.
- d) Explain the product formation giving mechanism in following reactions. Justify your answer.

ii)
$$H-c-n$$
 cH_2 $H-C-n$ cH_2 $H-c-n$ cH_2 $H-c-n$ cH_2 $H-c-n$ cH_2 $H-c-n$ cH_2 $H-c-n$ cH_2 $CH_$

[5]

Q3) Answer the following (Any one)

- a) Write short note on
 - i) 3 alkyl ketone effect
 - ii) Enolization in cyclohexanone
- b) i) Why H_A in Compound A can undergo tautomerism and H_B in compound B can not.

ii) Explain the concept of bond opposition strain with suitable example.

SECTION - II

Q4) Answer Any Three of the following:

[09]

- a) Describe the method of resolution via molecular complexes.
- b) Cis, 1,2 dichloro, Cis 1,2 dibromo Ethylene have dipole moments of 1.89, and 1.35 D respectively whereas the trans isomers are zero. Explain
- c) Describe the method of resolution via biochemical transformation with suitable examples.
- d) Explain, how Cis and trans isomers of trisubtituted ethylenes of the CH₃aC = CH_b differentiate by using N.M.R spectroscopy study.

Q5) Answer Any Four of the following

[08]

- a) Explain the stereochemistry of addition reaction of Olefins.
- b) Describe enantiomeric excess with suitable examples.
- c) Explain use of chiral solvating agents.
- d) Describe the methods of determination of relative configuration of diastereomers.
- e) Malic acid on treatment with PCl₅ gives (+) chlorosuccinic acid while on treatment with SOCl₂ gives (-) chlorosuccinic acid. Explain.
- **Q6**) a) Predict the product/s in <u>Any Two</u> of the following and explain stereochemical principles involved. Justify. [04]

b) Draw the correct stereostructure of a compound C with the help of ¹H-NMR data given below and justify your assignment. [04]

 ${}^{1}\text{H-NMR}$ (δ , ppm)

1.16 (d, J = 6.5Hz, 3H): 1.86 (ddd),

J = 12.5, 9.5, 5.5 1H; 2.02 (ddd,

J = 12.5, 2.0, 6Hz 1H); 3.36 (S, 9H)

3.54 (dd, J = 13, 9 1H); 3.74 (dd,

J = 13,10 Hz, 1H); 3.92 (dq J = 2.5,

6.5, 1H); 4.03 (m, 1H); 4.30 (1 H

 $d J = 3.5 \text{ exch. } D_2 O); 4.68 (m, 1H)$

XXXXX