Total No.	of Questions	:	8]
-----------	--------------	---	----

SEAT No. :	
------------	--

P1941 [4922]-2002

[Total No. of Pages: 3

M.Sc. PHYSICS

PHY UT - 602 : Solid State Physics (2014 Pattern) (4 Credits) (Semester - II)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Draw neat and labelled diagrams wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables and calculators is allowed.

Constants:

Boltzmann constant = $1.38 \times 10^{-23} \text{ J/K}$ Planck's constant = $6.623 \times 10^{-34} \text{ J-S}$

Avogadro's number = 6.023×10^{26} per kg mole

Mass of electron= 9.1×10^{-31} kgElectronic charge= 1.6×10^{-19} CBohr magneton= 9.27×10^{-24} A.m²Permeability of free space= $4\pi \times 10^{-7}$ H/m

- Q1) a) Explain the reduced zone, extended zone and periodic zone schemes for representing energy bands with neat diagrams.[4]
 - b) Explain Type I and Type II superconductors with suitable examples.[3]
 - c) For Helium atom in ground state, the mean radius in the Langvin's formula is approximated by Bohr radius of 0.528 nm. Calculate the diamagnetic susceptibility of helium atom. Given: Density of helium = 0.178 kg/m³.[3]
- **Q2)** a) Prove that for Kronig Penny potential with p < < 1, the energy of the lowest energy band at K = 0 is $E = \frac{h^2 p}{4\pi ma^2}$ [4]
 - b) Show that the flux coming from the hollow space of the super conducting ring is quantised. [3]

- c) An electromagnet with iron core can be magnetised typically upto 1 tesla. Compare the magnetic interaction energy $\mu_B B$ of an electron spin magnetic diapole moment with thermal energy $K_B T$ at room temperature. Hence show that at ordinary temperature, the approximation $K_B T/\mu_B B$ > > > 1 holds good. [3]
- Q3) a) Using equation $m \left[\frac{dv}{dt} + \frac{v}{\tau} \right] = -eE$ for electron drift velocity v, show that the d.c. electrical conductivity of metal is $\sigma = ne^2 \tau$ m. Symbols have usual meanings. [4]
 - b) Explain the paramagnetism in iron group ions on the basis of quenching of orbital angular momentum. [3]
 - c) A magnetic material has a magnetisation of 3300 A/m and flux density of 0.0044 wb/m². Calculate the magnetising force and relative permeability of the material. [3]
- **Q4)** a) Explain the formation of energy gap on the basis of nearly free electron model. [4]
 - b) For a simple 2-D square lattice, show that the Kinetic energy of a free electron at the corner of the first Brillouin Zone is higher than the electron at the midpoint of a side face of a zone by a factor of two. [3]
 - c) The critical temperature (T_C) for mercury with isotropic mass 199.5 is 4.185 K. Calculate its critical temperature when its isotropic mass changes to 203.4.
- Q5) a) Explain the phenomenon of hysteresis and hysteresis curve on the basis of domain theory.[4]
 - b) Describe the assumptions of BCS theory of super conductivity. [3]

c) The saturation magnetic induction of nickel is 0.65 wb/m². Calculate the magnetic moment of nickel atom in Bohr magneton. [3]

Given:

- i) Density of nickel = 8906 kg/m^3 .
- ii) Atomic weight of nickel = 58.7.
- **Q6)** a) Derive London equation for superconducting state. Hence obtain an expression for penetration depth. [4]
 - b) For a specimen of V_3 Ga, the critical fields are respectively 1.4×10^5 and 4.2×10^5 A/m for 14K and 13K. Calculate the transition temperature and critical fields at 0K and 4.2K.
 - c) A paramagnetic substance has 10^{28} atoms /m³. The magnetic moment of each atom is 1.8×10^{-23} A.m². Calculate the paramagnetic susceptibility at 300K.
- Q7) a) Give an account of the Weiss molecular exchange theory of ferromagnetism. Hence derive Curie-Weiss law.[5]
 - b) Explain quantum theory of paramagnetism. Derive Curie law. [5]
- Q8) a) Distinguish between metals, semiconductors and insulators on the basis of band theory of solids.[5]
 - b) Describe the motion of electron in 1-D periodic potential. Explain the concept of effective mass m*. Draw E-K, V-K and m* -K diagrams.[5]

• • •