Total No. of	Questions	:7]
--------------	-----------	-----

P	1	9	2	4
---	---	---	---	---

SEAT No.:		
[Total	No. of Pages	:2

[4922]-24 M.Sc.

PHYSICS

PHY UT-604: Quantum Mechanics - II (2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks:80

Instructions to the candidates:

- 1) Question No.1 is compulsory. Attempt any four from remaining.
- 2) Draw neat diagrams wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic table and calculators is allowed.

Q1) Attempt any <u>four</u> of the following:

- a) Show that there is no first order stark effect in the ground state of atom. [4]
- b) Find the eigen value of exchange operator P_{12} for identical particles 1 and 2. [4]
- c) Determine the form of antisymmetric total eigen function for a system of three particles in which the interaction between the particles can be ignored.
- d) Show that total energies in laboratory and centre of mass system are related by [4]

$$E_{lab} = \left(\frac{m_1 + m_2}{m_2}\right) E_{cm}.$$

e) Use perturbation theory to obtain the first order correction to nth energy level of an anharmonic oscillator with Hamiltonian [4]

$$H = \frac{P^2}{2m} + \frac{1}{2}kx^2 + bx^4$$
 for very small b.

f) Using variation principle obtain expression for ground state energy of hydrogen atom. [4]

Q2)	a)	Discuss classical and quantum mechanical picture of collision betwee identical particles.	een [8]
	b)	Develop time dependent perturbation theory to obtain first order correct to amplitude $a_m^{(1)}(t)$.	ion [8]
Q3)	a)	Obtain the slaters determinant for a system of N particles.	[8]
	b)	Obtain an expression for the Fermi golden rule (transition probability for harmonic perturbation.	ity) [8]
Q4)	a)	Using Born approximation obtain expression for differential cross sect for a screened coulomb field.	ion [8]
	b)	What is dipole approximation in time dependent perturbation theo Discuss selection rule for electric dipole transition.	ry? [8]
Q5)	a)	Using Green's function obtain an expression for scattering amplitude.	[8]
	b)	Use WKB theory to obtain transmission coefficient for α particle.	[8]
Q6)	a)	Using method of partial waves, obtain an expression for the cross sect for scattering by a perfectly rigid sphere.	ion [8]
	b)	What is Zeeman effect? Obtain expression for change in energy value ground state when second order effect is considered.	e of [8]
Q7)	a)	Obtain Bohr's quantization condition that bound state satisfy.	[4]
	b)	Describe vectors and pseudovectors in terms of intrinsic parity.	[4]
	c)	State conditions for validity of WKB approximation.	[4]
	d)	Discuss concept of symmetry in quantum mechanics.	[4]