Total No.	of	Questions	:	8]
-----------	----	-----------	---	----

Total No. of Questions: 8]	SEAT No. :
P1934	[Total No. of Pages : 3

[4922]-204 M.Sc. **PHYSICS**

PHY UT-604: Quantum Mechanics-I (2013 Pattern) (5-Credits) (Semester-II)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions from eight questions.
- 2) Draw neat diagrams wherever necessary.
- Figures to the right indicate full marks. 3)
- 4) Use of calculators allowed.
- Using expansion postulate, show that eigen functions belonging to discrete **Q1)** a) eigen values are normalizable. [4]
 - b) Define adjoint of an operator A. Show that $\langle A^+A \rangle$ is always positive.

[3]

- What is harmonic perturbation? How is it differs from constant c) perturbation?
- Using ladder operators a and a^+ , obtain the energy eigen values of linear **Q2)** a) harmonic oscillator. [4]
 - Show that $[L_x, L_y] = i$ to L_z and $[L^2, L_x] = 0$. b) [3]
 - Explain condition of validity of WKB approximation. c) [3]
- What is unitary operator? Show that the norm of any state $|\psi\rangle$ does not *Q3*) a) change under unitary transformation. [4]

- b) Show that Pauli spin matrices σ_x , σ_y and σ_z are unitary. [3]
- c) Obtain the matrix of Clebsch-Gordon co-efficients for a system having $j_1 = \frac{1}{2}, j_2 = \frac{1}{2}$. [3]
- **Q4)** a) Use variational method to estimate the ground state energy of harmonic oscillator with the help of trial wave function $\psi(x) = Ae^{-\alpha x^2}$. [4]
 - b) State fundamental postulates of quantum mechanics. [3]
 - c) For anti-Hermitian operator \hat{A} , show that $e^{i\alpha A}$ is unitary, where α is real number. [3]
- **Q5)** a) Define projection operator. Show that $\Sigma |\psi_n\rangle\langle\psi_n|=I$. [4]
 - b) Show that for associated with any degenerate eigen value, there are always an infinite number of eigen functions. [3]
 - c) Normalize the eigen function $\psi_n(x) = A \sin\left(\frac{n\pi}{a}x\right)$ in the range 0 < x < a.
- **Q6)** a) State and prove Fermi Golden rule. [4]
 - b) Using WKB approximation obtain Bohr Sommerfeld quantization condition for the bound state. [3]
 - c) Obtain eigen value spectrum of J² and Jz operators. [3]

Q7) a) Calculate the first order correction to ground state energy of an anharmonic oscillator of mass *m* and angular frequency *w* subjected to potential

$$V(x) = \frac{1}{2}mw^2x^2 + \lambda x^4.$$
 [5]

- b) When a set of functions $\{\phi_a\}$ will be orthonormal and complete? Hence obtain closure relation $\sum_a \phi_a(x) \phi_a^*(x') = \delta(x x')$. [5]
- Q8) a) Obtain the equation of first order correction in energy using time independent perturbation.[5]
 - b) Explain in brief dependent perturbation theory and obtain expression for first order amplitude $a_n(t)$. [5]

••••