Total No. of Questions : 6]	SEAT No.:
P1378	[Total No. of Pages : 3

[5123]-201 M.Sc. - I (Semester - II) PHYSICAL CHEMISTRY

CHP - 210: Fundamentals of Physical Chemistry - II (2013 Pattern) (5 Credit)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic table / calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k	=	$1.38 \times 10^{-16} \ erg \ K^{-1} \ molecule^{-1}$
			=	$1.38 \times 10^{-23}~\mathrm{J~K^{-1}}$ molecule ⁻¹
3.	Planck Constant	h	=	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \mathrm{J \ s}$
4.	Electronic Charge	e	=	$4.803 \times 10^{-10} \text{ esu}$
			=	$1.602 \times 10^{-19} \text{ C}$
5.	1 eV		=	23.06 k cal mol ⁻¹
			=	$1.602 \times 10^{-12} \mathrm{erg}$
			=	$1.602 \times 10^{-19} \mathrm{J}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R	=	$8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$
			=	8.314 J K ⁻¹ mol ⁻¹
			=	1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	=	96487 C equiv ⁻¹
8.	Speed of light	c	=	$2.997 \times 10^{10} \text{cm s}^{-1}$
			=	$2.997 \times 10^{8} \text{ m s}^{-1}$
9.	1 cal		=	$4.184 \times 10^7 \text{ erg}$
			=	4.184 J
10.	1 amu		=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	$\beta_{\rm c}$	=	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β_n	=	$5.051 \times 10^{-27} \text{ J T}^{-1}$
	Mass of an electron	m _c	=	$9.11 \times 10^{-31} \mathrm{kg}$
		C		-

SECTION - I

Q1) Attempt the following:

[10]

- a) Give the principle of ESR spectroscopy.
- b) Pure rotational Raman Spectra of linear molecule exhibit first line at 6B cm⁻¹ but remaining at 4B cm⁻¹. Explain.
- c) How electronically excited molecule loses its energy by phosphorescence.
- d) What is Fellget advantage in FTIR?
- e) Explain any two factors which affect the width of spectral lines.

Q2) Attempt any two of the following:

[10]

- a) How does optics of IR spectroscopy differ from Raman spectroscopy? Discuss the merits and demerits of Raman spectroscopy.
- b) Discuss rotational fine structure of electronic vibration transition.
- c) Explain photoelectron spectroscopy. Why is high vaccum needed for its study?
- d) Explain classical theory of Raman effect.

Q3) Solve any one of the following:

[5]

- a) Find the value of rotational constant for the molecule $Br^{79}F^{19}$ if the most intense spectral line at 300k is for the transition $J=17 \rightarrow J==18$.
- b) The rotational constant for the V=0 state of the molecule is 10 cm^{-1} and V=1 state is 9.5 cm^{-1} . Estimate the rotational constant in the state V = 2.

SECTION - II

Q4) Attempt the following:

[10]

- a) Write any secular determinant for ethylene molecule.
- b) Draw bonding and anti-bonding wave functions for H₂ molecule using valence bond theory.
- c) What are Weiss indices?

- d) Give preparation of ²²Na isotope.
- e) Give the principle of isotope dilution technique.

Q5) Attempt any two of the following:

[10]

- a) Explain the Huckel theory of cyclobutadiene.
- b) Discuss zone diffusion technique to calculate diffusion coefficient.
- c) Explain the use of radio isotopes to determine the solubility of sparingly soluble salt.
- d) Derive the expression for normalization constant for H₂ molecule using molecular orbital theory.

Q6) Solve any one of the following:

[5]

- a) Miller indices of the plane of a crystal are 436. Calculate the intercept on crystallographic axes.
- b) The half life period of a radio element is 24.5 minutes. How much of it would be left after 30 minutes, if the initial amount of the radioelement is 1g.

