Total No. of Questions :8] P2699 [5039]-202 M.Sc. (IMCA) INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATION Mathematics MIM-202: Algebra- I (2013 Pattern) (Semester - II) Time : 3 Hours] [Max. Marks : 1]		
Instr	uctio 1)	Hours] [Max. Marks :50 ns to the candidates: Attempt any five questions. Figures to the right indicate full marks.
Q1)	a)	Define order of an element in a group G. [2]
	b)	State and prove Lagrange theorem for finite groups. [4]
	c)	Let G be a group and H a non empty subset of G. Prove that H is a subgroup of G if ab^{-1} is in H whenever $a \& b$ are in H. [4]
Q2)	a)	Is union of two subgroups a subgroup? Justify. [2]
	b)	Let $G = \langle a \rangle$ be a cyclic group of order n . Prove that $G = \langle a^k \rangle$ if and only if $gcd(k, n) = 1$. [4]
	c)	Prove that if H has index 2 in G, then H is normal in G. [4]
Q3)	a)	Give an example of a non cyclic group, all of whose proper subgroups are cyclic. [2]
	b)	Let $\langle a \rangle = 30$. How many left cosets of $\langle a^4 \rangle$ in $\langle a \rangle$ are there? List them. [4]
	c)	Define transposition. Also prove that A_n is a subgroup of S_n . [4]
Q4)	a)	State and prove Cayley's theorem. [5]
	b)	Let G be a group and let $Z(G)$ be the center of G. If $G/Z(G)$ is cyclic, then prove that G is abelian. [5]

[4]

Q5) a) State and prove the First Isomorphism theorem for rings. [5] [5] Prove that R/A is a field if and only if A is maximal. b) **Q6)** a) Prove that the characteristic of an integral domain is O or a prime. [4] Show that every non zero element of \mathbb{Z}_n is a unit or a zero divisor. [4] b) Define simple group. c) [2] Define prime ideal of a ring R. **Q7**) a) [2] Let $\mathbb{Z}\left[\sqrt{2}\right] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Prove that $\mathbb{Z}\left[\sqrt{2}\right]$ is a ring under the b) ordinary addition and multiplication of real numbers. [4] c) Prove that a finite integral domain is a field. [4] Define divisors of zero in a ring R. **Q8)** a) [2] b) Prove that if D is an integral domain, then D[x] is an integral domain. [4] For any prime P, prove that the Pth cyclotomic polynomial c)

223

 $\phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$ is irreducible over \mathbb{Q} .