Total No. of Questions : 3]

SEAT No. :

P1381

[Total No. of Pages: 12

[5123]-204

M.Sc. - I (Semester - II)

ANALYTICAL CHEMISTRY

CHA - 290 : General Chemistry - II (2013 Pattern) (5 Credits)

- Part A Modern Separation Methods and Hyphenated Techniques (2.5 Credits/25 Marks)
- Part B Basic Biochemistry (5.0 Credits / 50 Marks)
- Part C Concept of Analytical Chemistry (2.5 Credits / 25 Marks)
- Part D Industrial Methods of Analysis (2.5 Credits / 25 Marks)
- Part E Organometallic and Inorganic Reaction Mechanism (2.5 Credits / 25 Marks)
- Part F Mathematics for Chemists (2.5 Credits / 25 Marks)
- Part G Pericyclic, Photochemistry and Free Radical Reactions (2.5 Credits / 25 Marks)

Modern Separation Methods and Hyphenated Techniques

Time: 3 Hours] [Max. Marks: 25

Instructions to the candidates:

- 1) All questions of respective section / part are compulsory.
- 2) Figures to right hand side indicate full marks.
- 3) Neat labelled diagrams must be drawn wherever necessary.
- 4) Use of log table / non programmable calculator is allowed.
- 5) Students should attempt any two parts from Part A, B, C, D, E, F and G or full paper of biochemistry (Part B).
- 6) Write the answers of two parts on separate answer books.

Q1) Answer the following

[10]

- a) State and explain principle of gas chromatography.
- b) What is gradient elution? Explain with example.
- c) How is the resolving power of HPLC column increased.
- d) What is metastable ion in Mass Spectrometry?
- e) What are the characteristics of an ideal detector in HPLC?

Q2) Attempt any two of the following:

[10]

- a) Explain the process of photoionization and thermal ionization in MS.
- b) With a suitable schematic diagram explain the function of the components of a gas chromatography setup.
- c) Distinguish between Normal phase HPLC and reverse phase HPLC.
- d) What is chromatography? Classify the different chromatographic techniques and give suitable explanation.

Q3) Attempt any one of the following:

[5]

- a) What is meant by hyphenated technique? Explain the technique of GC MS giving suitable examples.
- b) A mixture of substances A, B, C and D were analysed using T.C.D. Determine the weight percentage of each component if areas were 5.2cm², 9.1cm², 4.6cm² and 6.9cm².

respectively

Given: Compound Weight factor

A 0.56

B 0.73

C 0.81

D 0.85

Tota	l No.	of Qu	nestions: 6]	SEAT No.:					
P13	881		[5123]-204						
M.Sc I (Semester - II)									
ANALYTICAL CHEMISTRY									
Basic Biochemistry									
(2013 Pattern) (5 Credits)									
Time: 3 Hours] [Max. Marks:									
			<u>SECTION - I</u>						
Q1)	Ans	wer <u>a</u>	any three of the following:		[9]				
	a)	Hov	w is the end group of a protein determ	ined?					
	b)	Giv	e the structure of Glycogen and starch	h.					
	c)	Clas	ssify proteins with suitable examples.						
	d)	Diff	ferentiate between active and passive	transport of ion	s.				
Q2)	Q2) Attempt any two of the following: [8]								
	a)		scribe the structure and function of neulum.	nitochondria an	d endoplasmic				
	b)	Wh	at are the components of cell membra	ne? Give the fu	nction of each.				
	c)	Sho	ort note on Eucaryotic cell metabolism	n.					
Q3)	Atte	ttempt <u>any two</u> of the following: [8]							
	a)	Classify types of fatty acids.							
	b)	Comment on:							
		i)	Lysosomes						
		ii)	Sickle cell anaemia.						

c) Discuss the reactions of TCA cycle. Give it's energetics.

3

P.T.O.

SECTIONS - II

Q4) Answer any three of the following:

[9]

- a) Classify enzymes with suitable examples.
- b) What are double reciprocal plots? Give their importance.
- c) Discuss different types of inhibition.
- d) Give a brief account of post translational modification of protein.

Q5) Attempt any two of the following:

[8]

- a) What are coenzymes? Name the coenzyme derived from B complex vitamins. Discuss their biochemical role.
- b) Discuss the major structural differences between A, B and Z forms of DNA.
- c) Discuss characteristics of genetic code and give a note on wobble hypothesis.

Q6) Attempt any two of the following:

[8]

- a) Comment on:
 - i) Nutritional disorders (any 2)
 - ii) Night blindness
- b) Give experimental proofs to support DNA replication and whether it is semiconservative.
- c) Give therapeutic uses of enzymes.

Total No. of Questions : 3] SEAT No. :

P1381

[5123]-204 M.Sc. - I (Semester - II) ANALYTICAL CHEMISTRY Concept of Analytical Chemistry (2013 Pattern) (5 Credits)

Time: 3 Hours] [Max. Marks: 25

Q1) Answer the following:

[10]

- a) What is determinate error? Give an example.
- b) Differentiate between batch extraction and continuous extraction.
- c) Explain the test of significance.
- d) Calculate the proper number of significant figures in each of the following:
 - i) 0.00256
 - ii) 22.0092
- e) Give any two properties of nano materials.

Q2) Attempt any two of the following:

[10]

- a) Draw a neat labelled diagram of fractionating column and explain it's principle and working.
- b) Write a note on rejection of result: The Q test.
- c) Explain the factors affecting solvent extraction.
- d) Describe the steps involved in the sampling process.

Q3) Attempt any one of the following:

[5]

- a) Write a note on salt induced precipitation of proteins.
- b) The following results were obtained in the replicate determination of lead content of a blood sample: 0.613, 0.615, 0.614, 0.615 and 0.617 ppm. Calculate the mean and standard deviation of this set of data.

Total No. of Questions: 3] **SEAT No.:** P1381 [5123]-204 M.Sc. - I (Semester - II) **ANALYTICAL CHEMISTRY Industrial Methods of Analysis** (2013 Pattern) (5 Credits) Time: 3 Hours] [Max. Marks: 25 **Q1)** Answer of the following: [10] Enlist different types of process analysers. a) b) Explain the concept of stepwise formation constants. Give two types of quality standards for laboratory. c) Define: Chromatography. d) 0.02 g NaOH is dissolved in 100 ml water. What is the concentration of e) solution in ppm. Q2) Attempt any two of the following: [10] Write a note on automatic elemental analyzer. a) Describe stability and instability constants giving suitable examples. b) What is an acidic buffer? Explain it's action giving suitable example. c) Give a brief account of cost and benefits of a quality system. d) Q3) Answer any one of the following: [5] Define: a)

- i) Quality audits.
- ii) Limiting reactants.
- iii) Gram mole.
- b) Write a note on Industrial process analyser.

Total No. of Questions: 3]

SEAT No.	:	

P1381

[5123]-204

M.Sc. - I (Semester - II)

ANALYTICAL CHEMISTRY

Organometallic and Inorganic Reaction Mechanism (2013 Pattern) (5 Credits)

Time: 3 Hours | [Max. Marks: 25]

Q1) Answer the following:

[10]

- a) Determine the valence electron counts for the transition metals in the following complexes
 - i) $[Fe(CO_4)]^{2-}$
 - ii) $CO_2(CO)_8$
- b) Define and explain:
 - i) Oxidative addition.
 - ii) Reductive elimination.
- c) What do you understand by inert and lablle complexes?
- d) Which of the following obey the 18e-rule
 - i) $[Ni(CN_4)]^{2-}$
 - ii) Fe $(CO)_5$
- e) Predict the type of reaction.

Q2) Attempt any two of the following:

[10]

- a) Differentiate between associative and dissociative mechanisms in substitution reactions.
- b) Write a note on hydroformylation reaction.
- c) Explain the methods of synthesis of metal carbonyls.
- d) Explain in detail the electron transfer reactions.

Q3) Attempt any one of the following:

[5]

- a) ¹³C NMR is a powerful technique to characterize carbonyl compounds. Explain with suitable examples.
- b) Write a note on: Trans effect.

Total No. of Questions: 3]

SEAT No.	:	
		I

P1381

[5123]-204 M.Sc. - I (Semester - II) ANALYTICAL CHEMISTRY Mathematics For Chemists (2013 Pattern) (5 Credits)

Time: 3 Hours | [Max. Marks: 25]

Q1) Answer the following:

[10]

- a) Give the transpose of the following matrices.
 - i) $\begin{bmatrix} 6 & 3 & 8 \\ 2 & 9 & 4 \end{bmatrix}$

ii)
$$\begin{bmatrix} 7 & 2 & 4 \\ 8 & 7 & 2 \\ 7 & 3 & 6 \end{bmatrix}$$

- b) Give the quotient rule for differentiation.
- c) State whether the following differential equations are exact or inexact.

i)
$$(x^2y+x) dy + (xy^2 - y) dx = 0$$

ii)
$$x^2dy - y^2 dx - xy dx = 0$$

- d) Define unit and diagonal matrices. Give examples.
- e) Differentiate the equation w.r.t.x. $y = \frac{2+x}{2-x}$

Q2) Attempt any two of the following:

[10]

a) Using Falk's scheme evaluate

i)
$$A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

$$x = \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix} \quad \mathbf{A}\mathbf{x} = ?$$

9 *P.T.O.*

[5]

ii)
$$B = \begin{bmatrix} 7 & 1 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix}$$
 By =?

- b) Enlist rules of partial differentiation and give suitable examples.
- c) One card is drawn from a well shuffled decle of 52 cards. Calculate the probability that the card will be:
 - i) a black card
 - ii) not a diamond
 - iii) a diamond
 - iv) not a black card
- d) i) Find the determinant of :- $\begin{bmatrix} 4 & 8 & 2 \\ 9 & 2 & 2 \\ 6 & 3 & 4 \end{bmatrix}$
 - ii) Find the cofactor of :- $\begin{bmatrix} 7 & 6 & 3 \\ 5 & 1 & 2 \\ 6 & 5 & 6 \end{bmatrix}$

Q3) Answer any one of the following:

a) Solve the following:

i) Integrate
$$\int_{0}^{2} (x+1)(x^{3}-3) dx$$

- ii) Find the derivative of $x^2 y^2 + 5x = 9y$
- b) Write a short note on Taylor and Mclaurin theorem.

Total No. of Questions : 3] SEAT No. :

P1381

[5123]-204 M.Sc. - I (Semester - II) GENERAL CHEMISTRY

Pericyclic, Photochemistry and Free Radical Reactions (2013 Pattern) (5 Credits)

Time: 3 Hours] [Max. Marks: 25

Q1) Answer the following:

[10]

- a) What do you mean by quantum yield, explain it's significance in photochemical reactions.
- b) Irradiation of o-xylene yields a mixture of m-and p-xylenes.
- c) Discuss step-wise mechanism of Antimarkownikoff's addition with suitable example.
- d) In allylic bromination NBS is used as a brominating reagent instead of Bromine.
- e) Write the mechanism of claisen rearrangement with suitable examples.

Q2) Predict the product indicating mechanism in any two of the following: [10]

a)
$$CCl_4 + CH_2N_2(excess) \xrightarrow{hv} ?$$

Q3) Attempt any two of the following:

[5]

- a) Explain free radical axylation of aromatic rings.
- b) Write a short note on Di IT metane rearrangement.
- c) Give a brief account of Norvish Type I process.

