\mathbf{D}			
$\boldsymbol{\nu}$	h		
	T D	. 7	. 7

SEAT No.:	
-----------	--

[Total No. of Pages :3

[5022] - 103 M.Sc. PHYSICS

PHY UT 503: Mathematical Methods in Physics (2013 Pattern) (5- Credits) (Credit System) (Semester - I)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) Answer ANY FIVE questions out of eight questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator is allowed.
- Q1) a) Define Basis and Dimension of a Vector Space. Explain with one example. [4]
 - b) Evaluate $\oint_c \frac{e^z}{z(z+1)} dz$ where C is the circle |z-1|=3. [3]
 - c) Obtain the Associated Legendre function $P_2^3(x)$. [3]
- **Q2)** a) State and prove a necessary condition (Cauchy Riemann Equations) for a function w = f(z) = u(x, y) + iv(x, y) to be analytic in a region R.[4]
 - b) Find the Fourier coefficients a_n and b_n in the interval (-L, +L) for odd function. [3]
 - c) Determine whether or not the following vectors in \mathbb{R}^3 are linearly dependent: $\{(1,0,0),(0,1,0),(0,0,0)\}$. [3]
- Q3) a) State and prove Cauchy-Schwarz inequality. [4]
 - b) For which value of K will the vector u = (1, -2, K) in R^3 be a linear combination of the vectors V = (3, 0, -2) and W = (2, -1, -5)? [3]
 - c) Determine the region in the z plane represented by $1 < |z + 2i| \le 2$. [3]

Q4) a) Consider the following basis of Euclidean space R³: [4]

$$\{V_1 = (1, 1, 1), V_2 = (0, 1, 1), V_3 = (0, 0, 1)\}$$

By using Gram schmidt orthogonalization process to transform $\{V_i\}$ into an orthonormal basis $\{u_i\}$

b) Let $V = R^3$. Show that W is a subspace of V, where $W = \{(a,b,c)/a+b+c=0\}$. [3]

c) Prove that:
$$J'_n(x) = \frac{1}{2} [J_{n-1}(x) - J_{n+1}(x)].$$
 [3]

- **Q5)** a) Determine the first three Laguerre polynomials $L_0(x)$, $L_1(x)$ and $L_2(x)$. [4]
 - b) Prove that the Inverse Laplace transform operator L⁻¹ is linear. [3]

c) Determine the residue of
$$\frac{z^2}{(z-2)(z^2+1)}$$
 at $z=i$. [3]

Q6) a) Prove that if $\mathcal{L}\left\{f(t)\right\} = F(S)$ then [4]

$$\mathcal{L}\left\{f\left(at\right)\right\} = \frac{1}{a} F\left(\frac{S}{a}\right)$$

b) Prove that: [3]

$$H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x).$$

c) Discuss whether or not R^2 is a subspace of R^3 . [3]

Q7) a) Let T be the linear operator on R³ defined by T (x, y, z) = (2y + z, x - 4y, 3x). [5]

i) Find the matrix of T in the basis $\{f_1 = (1, 1, 1), f_2 = (1, 1, 0), f_3 = (1, 0, 0)\}$

- ii) Verify that $[T]_f[V]_f = [T(V)]_f$ for any vector $V \in \mathbb{R}^3$.
- b) State and prove the orthogonality property of Legendre polynomials.[5]

Q8) a) Find
$$\mathcal{L}^{-1} \left\{ \frac{3s+1}{(s-1)(s^2+1)} \right\}$$
 [5]

b) Let
$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
. [5]

Find a (real) orthogonal matrix P for which P⁻¹ AP is diagonal.

GENOREN GENOREN