P2904

SEAT No. :			
[Total	No	of Pages	

[5023] - 1001

M.Sc.-I

PHYSICAL CHEMISTRY

CHP - 110 : Fundamentals of Physical Chemistry - I (2014 Pattern) (Semester - I) (4 Credits)

Time: 3 Hours] [Max. Marks:50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic tables / calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k	=	$1.38 \times 10^{-16} \ \mathrm{erg} \ \mathrm{K}^{-1} \mathrm{molecule^{-1}}$
			=	$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h	=	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \mathrm{J}\mathrm{s}$
4.	Electronic Charge	e	=	$4.803 \times 10^{-10} \text{ esu}$
			=	$1.602 \times 10^{-19} \text{ C}$
5.	1 eV		714	23.06 k cal mol ⁻¹
			=	1.602 × 10 ⁻¹² erg
	•		=	$1.602 \times 10^{-19} \text{ J}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R	***	$8.314 \times 10^{9} \text{ erg K}^{-1} \text{ mol}^{-1}$
				8.314 J K ⁻¹ mol ⁻¹
			=	. 1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	=	96487 C equiv ⁻¹
8.	Speed of light	c	=	$2.997 \times 10^{10} \mathrm{cm \ s^{-1}}$
			==	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	1 cal		=	$4.184 \times 10^7 \text{erg}$
			=	4.184 J
10.	1 amu		=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β_e	_=	$-9.274 \times 10^{-24} \text{ J T}^{-1}$
12.	Nuclear magneton	β_n	=	$5.051 \times 10^{-27} \text{ J T}^{-7}$
13.	Mass of an electron	$m_{_{e}}$	=	$9.11 \times 10^{-31} \text{ kg}$

SECTION -I

Q1) Attempt the following:

[10]

- Explain the terms black body radiation, ultraviolet catastrophe and Rayleigh
 Jeans law.
- b) Define heat capacity. Distinguish between heat capacity and molar heat capacity.
- c) Define vapour pressure of liquids. How does it vary with temperature?
- d) What are colligative properties? Explain the terms osmosis and osmotic pressure.
- e) Define Helmholtz free energy. Show that it is state function.

Q2) Attempt any two of the following:

[10]

- a) Give eigen function and eigen value equation for partical in one dimensional box. Sketch and explain the probability distribution curves for the first four energy levels of a partical in a one dimensional box.
- b) Derive the vant Hoff reaction isotherm. Give its application?
- c) Derive the workdone in a reversible isothermal expansion of a perfect gas.
- d) Define chemical potential. Explain the phase diagram of solid liquid boundary with respect to $\frac{dP}{dT}$.

Q3) Solve any one of the following.

[5]

- a) The energy required for the ionisation of a certain atom is 3.44×10^{-18} J. The absorption of a photon of unknown wavelength ionises the atom and eject an electron with velocity 1.03×10^6 ms⁻¹. Calculate the wavelength of incident radiation.
- b) Calcualate the change in entropy with 2 moles of nitrogen gas are mixed with 8 gm chlorine gas at 25°C.

[Atomic wts. N = 14, Cl = 35.5]

SECTION -II

Q4) Attempt the following:

[10]

- a) Give second order reaction rate constant equation for equal initial concentration and show that $t \frac{1}{2} = \frac{1}{ak}$.
- b) Explain Lineweaver and Eadie plot for enzyme uncompetitive inhibition.
- c) State the law of photochemical equivalence and Define the term 'einstein'.
- d) What are fast reactions? Distinguish between flow technique and stopped flow technique.
- e) Explain Fermi-Dirac statistics.

Q5) Attempt any two of the following.

[10]

- a) What is partition function? Obtain an expression for rotational partition function.
- b) Derive the expression for the velocity constant of the bimolecular reactions on the basis of absolute reaction rate theory.
- c) What are consecutive reactions? How can the kinetics of such reactions be studied by using steady state principle.
- d) Explain the terms initiation, propogation, inhibition and termination. Discuss with suitable examples the phenomenon of chain reaction.

Q6) Solve any one of the following:

[5]

- a) What will be the initial rate of a reaction if its rate constant is 10⁻³ min⁻¹ and the concentration of the reactant 0.2 mol dm⁻³. How much of reactant will be converted in to product in 200 minutes.
- b) The enzymatic conversion of substrate at 25°C has a Michaelis constant 0.035. The rate of reaction is 1.2×10⁻³ MS⁻¹, when the substrate concentration is 0.11 M. What is the rate constant of enzymolysis of the initial concentration of enzyme is considered constant.

