P2607

SEAT No. :	
 [Total	No. of Pages:

[5023]-12

M.Sc. (Part - I)

CH - 130: INORGANIC CHEMISTRY - I

(2008 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks:80

Instructions to the candidates:

- All questions are compulsory.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Neat and labelled diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.

SECTION -I

Q1) Attempt any three of the following:

- [15]
- Discuss the symmetry operations in the following point groups.
 - i) C₃h ii) C₃v iii) D₂h

- What are the conditions of mathematical group and explain them b) considering an example of SOCl, molecule.
- Give the stereographic projection of D_{5d} and C_{5h} point groups. Justify c) your answer.
- Write matrices for i and $C_2^{(y)}$ symmetry operations and show by matrix d) multiplication. $C_2^{(x)} \times C_2^{(y)} = C_2^{(z)}$.
- Draw possible isomers of [Ma3b3] complex. Explain on the basis of e) symmetry which isomer is optically active.

Q2) Attempt any three of the following:

[15]

a) Using similarity transformation and multiplication table given below, group the symmetry operations in the appropriate classes.

C_2h	Е	C_2	i	$\sigma_{_{h}}$
Е	Е	C_2	i	$\sigma_{_{h}}$
C_2	C_2	E	$\sigma_{_h}$	i
i	i	$\sigma_{_h}$	E	C_2
$\sigma_{_{\! h}}$	$\sigma_{_{ m h}}$	i	C_2	Е

b) Write out the characters of the representations of the following direct product and determine the set of irreducible representations which comprise them for the point group Td.

Direct product $E \times T_2$

Td	Е	8C ₃	3C ₂	6S ₄	$6\sigma_{d}$		
A_1	1	1	1	1	1		$x^2+y^2+z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$zz^2-x^2-y^2, x^2-y^2$
T_1	3	0	-1	1	-1	$R_x R_y R_z$	
T_2	3	0	-1	-1	1	(x, y, z)	(xy,xz,yz)

- c) Sketch and describe all the symmetry operations in B₃ N₃ H₆ molecule and classify it into appropriate point group.
- d) Define the following terms with examples.
 - i) Unit cell
 - ii) Crystal lattice
 - iii) Space lattice
 - iv) Miller indices
 - v) Weiss indices

e) Fill in the missing entries X, Y and Z in the following character table. Label the irreducible representations with appropriate Muliken symbols.

	Е	C_2^z	C_2^y	C_2^x
T ₁	1	1	1	1
T_2	1	X	-1	-1
T_3	1	-1	Y	-1
T ₄	1	-1	-1	Z

Q3) Attempt any two of the following:

[10]

a) Find out normalized SALC using projection operator of B_{1g} irreducible representation which operates on 61 orbital of XeF_4 molecule belonging to D_4h point group.

			C_2							
B_{lg}	1	-1	1	1	-1	1	-1	1	1	-1

- b) By schematic representation give the products of following symmetry operations in BrF₅ molecule.
 - i) $\sigma_{v_1} \times \sigma_{d_1}$
 - ii) $C_2' \times \sigma_{\nu_2}$
- c) For [Ni Cl₄]²⁻ complex ion find the reducible representation for which sigma bond form the basis and find out which orbitals from central ion will be offered for sigma bonding.

Given: the character table for Td in question no. 2(b).

SECTION -II

Q4) Answer any three of the following:

[15]

- a) Explain with suitable examples following reactions of organometallic compounds.
 - i) β hydrogen elimination
 - ii) Lewis acidity
 - iii) Oxidation reaction

	d)	Give an brief account of nitrogen activation.						
	e)	Mention the position and relative abundance of noble gases in earth crus Why is helium present in low concentration in atmosphere. Givapplications of noble gases.						
Q5)	Writ	te notes on <u>any three</u> of the following: [1	5]					
	a)	Oscillating reactions.						
	b)	Oxyacids of sulphur.						
	c)	Lead acid battery.						
	d)	Electron rich compounds.						
	e)	Metal compounds of fullerens.						
Q6)	a)	Draw <u>any five</u> structures:	[5]					
		i) P_4O_{10}						
		ii) $B_3N_3H_6$						
		iii) Ge_6R_6						
		iv) $Mn_2(CO)_{10}$						
		v) B ₆ H ₁₀						
		vi) Li ₄ (CH ₃) ₄ .						
	b)	Complete <u>any five</u> reactions:	[5]					
		i) $LiAlH_4 + SiCl_4 \rightarrow ?$						
		ii) PCl_5 + KF \rightarrow ?						
[502:	3]-12	4						

Give an account of carbides of Boron.

Give characteristic reactions of COCl_2 .

b)

c)

iii)
$$I_{r}$$
 $+ H_{2}$ \rightarrow ?

iv)
$$NH_4Cl + PCl_5 \longrightarrow 7$$
 + HCl.

v) Na +
$$C_{10}$$
 H₈ (THF) \longrightarrow $?$

vi) Ph As
$$I_2$$
 + Hg \longrightarrow ? + Hg₂ I_2