Total No. of Questions : 5]

P4089

[Total No. of Pages : 3]

[5039]-12

M.Sc. Tech. (Semester - I)

INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS

MIM - 102 : Algebra - I (2008 Pattern)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicates full marks.
- Q1) Attempt any eight of the following:

 $[8 \times 2 = 16]$

a) Let G be a group of all 2×2 non-singular matrices with real entries,

under matrix multiplication. Show that $H = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} / a \neq 0 \text{ in } \mathbb{R} \right\}$ is

normal subgroup of G.

- b) Say true or false and justify your answer: "Every proper subgroup of a group of order 77 is cyclic".
- c) Find the order of the permutation $\sigma = (1, 2, 3)(3, 2)(1, 2)$.
- d) Define unit in a ring. Find the units in the ring of integers \mathbb{Z} .
- e) If 'a' is generator of a cyclic group G, show that a⁻¹ is also a generator.
- f) Is every integral domain a field? Justify your answer.
- g) If R is a ring with unity 1 and ϕ is a ring homomorphism of R onto R¹ prove that, $\phi(1)$ is the unity of R¹.
- h) Give an example of a subring of a ring which is not an ideal.
- i) Find characteristics of the following rings.
 - i) $2\mathbb{Z}$
 - ii) $\mathbb{Z}_3 \times \mathbb{Z}_4$
- j) Is $x^3 + 2x + 3$ an irreducible polynomial in $\mathbb{Z}_5[x]$? Justify your answer.

Q2) A) Attempt any one of the following:

 $[1 \times 6 = 6]$

- a) Prove that every subgroup of a cyclic group is cyclic.
- b) State and prove the necessary and sufficient conditions for a nonempty subset H of a group G to be a subgroup.
- B) Attempt any two of the following:

 $[2 \times 5 = 10]$

- a) Show that any subgroup of a group of index 2 is normal subgroup.
- b) Let $\sigma = (2,3,1,4)(4,6)(2,1,5)$ be a permutation in S₆. Check whether ' σ ' is even or odd permutation.
- c) If G is a finite group of prime order, then show that G is cyclic group.

Q3) A) Attempt any <u>one</u> of the following:

 $[1 \times 6 = 6]$

- a) Let G be a group and $O(G) = P^2$, where 'p' is a prime number. Prove that G is abelian.
- b) Let ϕ be a homomorphism of a group G onto \overline{G} with kernel K. Prove that $\frac{G}{K}\cong \overline{G}$.
- B) Attempt any two of the following:

 $[2 \times 5 = 10]$

- a) Prove that a group of order 42 is not simple.
- b) Let N and M be two normal subgroups of a group G such that $N \bigcap M = \{e\} \text{ show that } n \cdot m = m \cdot n, \ \forall \ n \in N \ \& \ \forall \ m \in M \ .$
- c) Define: conjugacy class. Find conjugacy classes of S₃.

Q4) A) Attempt any <u>ONE</u> of the following:

 $[1 \times 6 = 6]$

- a) Prove that a commutative ring R with unity is integral domain if and only if cancellation laws hold in R.
- b) Let R be a commutative ring with unity and M be a maximal ideal of R, then prove that $\frac{R}{M}$ is a field.

B) Attempt any two of the following:

$$[2 \times 5 = 10]$$

- a) Find all prime ideals of \mathbb{Z}_{10} .
- b) Prove that the homomorphism ϕ of a ring R onto the ring R' is an isomorphism if and only if Kernel of ϕ is $\{0\}$.
- c) Let $U = \langle x^2 + x + 4 \rangle$ be an ideal of $\mathbb{Z}_{11}[x]$ generated by $x^2 + x + 4$. Show that $\mathbb{Z}_{11}[x]/U$ is a field.
- **Q5)** A) Attempt any one of the following:

 $[1 \times 6 = 6]$

- a) State and prove division algorithm for polynomials ring F[x], where F is a field.
- b) Prove that if R is integral domain then so is polynomial ring R [x].
- B) Attempt any two of the following:

 $[2 \times 5 = 10]$

- a) Find all units in the ring of Gaussian integers $\mathbb{Z}[i]$. Further, if a + ib is not a unit in $\mathbb{Z}[i]$, show that $a^2 + b^2 > 1$.
- b) If 'p' is a prime number, show that the polynomial $f(x) = 1 + x + x^2 + \dots + x^{p-1}$ is irreducible over rationals.
- c) Prove that the product of two primitive polynomials is a primitive polynomial.

