Total No. of Questions :6]

SEAT No.:	

P1899

[Total No. of Pages :3

[5223] - 1002 M.Sc. - I

INORGANIC CHEMISTRY

CHI-130: Molecular Symmetry and Chemistry of P - block Elements (2014 Pattern) (Semester - I) (4 Credit System)

Time: 3 Hours] [Max. Marks:50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Answer to the two sections should be written in separate answer books.
- 3) Figures to the right indicate full marks.
- 4) Use of log tables, character tables and calculator is allowed.

SECTION - I

Q1) Answer the following:

[10]

- a) What is the point group symmetry in cyclopentadienyl anion $(C_5H_5^-)$ and Benzene?
- b) When n is odd, $S_n^n \equiv \sigma$. Prove this.
- c) Draw the structure of PCL₅ molecule and identity different types of planes in it.
- d) Find out the product of $C_3^{-1} \times C_3^{-2}$ in BF₃ molecule and also find whether they commute with each other or not.
- e) Mention the symmetry elements, order and classes of Td point group.

Q2) Answer any two of the following:

[10]

- a) Explain all the symmetry elements present in the molecule XeOF₄ and assign the correct point group.
- b) Define Abelian group. Prove that C_{2v} point group is an Abelian group.

- c) Derive the character table for D₂ point group using great orthogonality theorem and assign Mulliken symbols to the irreducible representations.
- d) Give the matrix representation for improper axis of rotation and using matrix multiplication prove,

$$S_2 = C_2(z) \times \sigma_{xy} = i$$

Q3) Answer any one of the following:

[5]

- a) Find the reducible representation for $[PdCl_4]^{2-}$ molecule considering σ -bond as a basis of representation and thus find out the orbitals offered for σ -bond formation in the molecule.
- b) Find out the normalized SALC using projection operator of E^1 irreducible representation on σ_1 orbitals of CO_3^{2-} ion.

D_3h	Е	$2C_3$	$3C_2$	$\sigma_{_h}$	$2S_3$	$3\sigma_{\rm v}$
E'	2	-1	0	2	-1	0

SECTION - II

Q4) Answer the following:

[10]

- a) Alkali metal solution is a good conductor of electricity in liquid ammonia. Explain.
- b) Give classification of hydrides of Boron.
- c) Give the preparation methods for dihydrogen.
- d) What are allotropes of carbon? Draw the structure of Metal fullerene.
- e) What is activation of nitrogen? Explain any two methods of activation.

Q5) Attempt any two of the following:

[10]

- a) Write a note on interhalogen compounds.
- b) What are organometallic compounds? Explain organometallic compounds of Lithium with synthesis, properties, structure and uses.
- c) Write a note on carbon nano tubes.
- d) What are oxyacids? Explain oxyanions of halogens.

[5223] - 1002

[5]

Q6) Attempt any one of the following:

- a) Explain the structure and bonding in
 - i) Ammonia.
 - ii) B_4H_{10}
- b) Draw the structures of following:
 - i) ClF₅
 - ii) B₅Hg
 - iii) 18 crown 6
 - iv) Li₄(CH₃)₄
 - v) PH₃

D_{4h}	Е	2C ₄	C_2	2C ₂ '	2C ₂ "	L	2S ₄	$\boldsymbol{\sigma}_{_{h}}$	$2\sigma_{\rm v}$	$2\sigma_{_d}$		
$\overline{\mathrm{A}_{\mathrm{lg}}}$	1	1	1	1	1	1	1	1	1	1		x^2+y^2,z^2
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R _z	
\mathbf{B}_{lg}	1	-1	1	1	-1	1	-1	1	1	-1		x^2-y^2
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
Eg	2	0	-2	0	0	2	0	-2	0	0	(R_x,R_y)	(xz,yz)
A_{lu}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	Z	
B_{lu}	1	-1	1	1	-1	-1	1	-1	-1	1		
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_{u}	2	0	-2	0	0	-2	0	2	0	0	(x,y)	

