Total No. of Questions :6] | SEAT No.: | | | |-----------|--------------|----| | [Total | No. of Pages | :3 | P2905 [5023] - 1002 #### M.Sc. I #### **INORGANIC CHEMISTRY** # CHI - 130: Molecular Symmetry and Chemistry of P - Block Elements (2014 Pattern) (New) (4 Credit) (Semester - I) Time: 3 Hours [Max. Marks: 50 Instructions to the candidates: - 1) All questions are compulsory. - 2) Answer to the two sections should be written in separate answer books. - 3) Figures to the right indicate full marks. - 4) Use of log tables / character tables and calculator is allowed. #### **SECTION - I** **Q1)** Answer the following: [10] - a) What is the point group symmetry of cyclopentane and cyclobutane? - b) Find the product of $\sigma \times 4 \times c_2^z$ using cartesian coordinates. - c) Write down all the associative operations with S_5 axis. - d) How do you distinguish between C_4v and C_4h point groups. Using suitable examples? - e) Identify and draw different types of planes in No₃-ion. - **Q2)** Attempt any two of the following: [10] - a) Write the matrices for C_2^x , C_2^y and C_2^z . Find the product of the following using matrix multiplication: - i) $C_2^x \times C_2^y$ - ii) $C_2^y \times C_2^z$ - iii) $C_2^x \cdot C_2^z$ - b) Sketch and describe all symmetry operations in MnO₄-ion. Justify it and find out the point group. *P.T.O.* - c) Derive the character table for D₂h point group using great orthogonality theorem. - d) List all the possible symmetry elements for trans dichloroethylene molecule and show that they form a mathematical group. ## Q3) Attempt any one of the following: [5] - a) For PC1₅ considering sigma band as a basis of representation find the reducible representation and find out the arbitals that are offered for sigma banding. - b) Find out the narmalized SALC using projection operator of Eu irreducible representation which operates an σ_1 orbital of the [Cu (NH₃)₄]²⁺ complex ion. #### **SECTION - II** #### **Q4)** Answer the following: [10] - a) BF₃ is a hard Lewis acid. Explain. - b) Name different Pseudohalogens and corresponding halogens. - c) Mention different crown ethers used for extraction of alkali metals. - d) Borazole is called as inorganic benzene. Explain. - e) What are electron precise hydrides? Explain with example. ## Q5) Attempt any two of the following: [10] - a) Write a note on molecular sieves. - b) Give an account of oxanions of nitrogen. - c) What are intercalation compounds of graphite? Explain with example - d) Give an account of oxoanions of halogens. [5] # **Q6)** Draw any five structures. - a) B₅ Hg - b) Al₂ Cl₆ - c) IF5 - d) $\operatorname{Li}_{4}\left(\operatorname{CH}_{3}\right)_{4}$ - e) AS_4O_{10} - f) S₂ N₂ - g) B₃ N₃ H₃ Cl₃ # Given: Character Table for D₃h Point Group | D_3h | Е | 2C ₃ | 3C ₂ | $\sigma_{_{h}}$ | 2S ₃ | $3\sigma_{\rm v}$ | | | |-------------------------------------|---|-----------------|-----------------|-----------------|-----------------|-------------------|----------------|-------------------| | \mathbf{A}_1^1 | 1 | 1 | 1 | 1 | 1 | 1 | | $x^2 + y^2 + z^2$ | | \mathbf{A}_2^1 | 1 | 1 | -1 | 1 | 1 | -1 | R _z | | | $\mathrm{E}^{\scriptscriptstyle 1}$ | 2 | -1 | 0 | 2 | -1 | 0 | (x,y) | (x^2-y^2,xy) | | A_1^{11} | 1 | 1 | 1 | -1 | 1 | 1 | | | | \mathbf{A}_2^{11} | 1 | 1 | -1 | -1 | -1 | 1 | Z | | | E^{11} | 2 | -1 | 0 | -2 | 1 | 0 | (Rx, Ry) | (xz, yz) |