Total No. of Questions :6]

SEAT No.:		
[Total	No. of Pages	:3

P2905

[5023] - 1002

M.Sc. I

INORGANIC CHEMISTRY

CHI - 130: Molecular Symmetry and Chemistry of P - Block Elements (2014 Pattern) (New) (4 Credit) (Semester - I)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Answer to the two sections should be written in separate answer books.
- 3) Figures to the right indicate full marks.
- 4) Use of log tables / character tables and calculator is allowed.

SECTION - I

Q1) Answer the following:

[10]

- a) What is the point group symmetry of cyclopentane and cyclobutane?
- b) Find the product of $\sigma \times 4 \times c_2^z$ using cartesian coordinates.
- c) Write down all the associative operations with S_5 axis.
- d) How do you distinguish between C_4v and C_4h point groups. Using suitable examples?
- e) Identify and draw different types of planes in No₃-ion.
- **Q2)** Attempt any two of the following:

[10]

- a) Write the matrices for C_2^x , C_2^y and C_2^z . Find the product of the following using matrix multiplication:
 - i) $C_2^x \times C_2^y$
 - ii) $C_2^y \times C_2^z$
 - iii) $C_2^x \cdot C_2^z$
- b) Sketch and describe all symmetry operations in MnO₄-ion. Justify it and find out the point group.

P.T.O.

- c) Derive the character table for D₂h point group using great orthogonality theorem.
- d) List all the possible symmetry elements for trans dichloroethylene molecule and show that they form a mathematical group.

Q3) Attempt any one of the following:

[5]

- a) For PC1₅ considering sigma band as a basis of representation find the reducible representation and find out the arbitals that are offered for sigma banding.
- b) Find out the narmalized SALC using projection operator of Eu irreducible representation which operates an σ_1 orbital of the [Cu (NH₃)₄]²⁺ complex ion.

SECTION - II

Q4) Answer the following:

[10]

- a) BF₃ is a hard Lewis acid. Explain.
- b) Name different Pseudohalogens and corresponding halogens.
- c) Mention different crown ethers used for extraction of alkali metals.
- d) Borazole is called as inorganic benzene. Explain.
- e) What are electron precise hydrides? Explain with example.

Q5) Attempt any two of the following:

[10]

- a) Write a note on molecular sieves.
- b) Give an account of oxanions of nitrogen.
- c) What are intercalation compounds of graphite? Explain with example
- d) Give an account of oxoanions of halogens.

[5]

Q6) Draw any five structures.

- a) B₅ Hg
- b) Al₂ Cl₆
- c) IF5
- d) $\operatorname{Li}_{4}\left(\operatorname{CH}_{3}\right)_{4}$
- e) AS_4O_{10}
- f) S₂ N₂
- g) B₃ N₃ H₃ Cl₃

Given:

Character Table for D₃h Point Group

D_3h	Е	2C ₃	3C ₂	$\sigma_{_{h}}$	2S ₃	$3\sigma_{\rm v}$		
\mathbf{A}_1^1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
\mathbf{A}_2^1	1	1	-1	1	1	-1	R _z	
$\mathrm{E}^{\scriptscriptstyle 1}$	2	-1	0	2	-1	0	(x,y)	(x^2-y^2,xy)
A_1^{11}	1	1	1	-1	1	1		
\mathbf{A}_2^{11}	1	1	-1	-1	-1	1	Z	
E^{11}	2	-1	0	-2	1	0	(Rx, Ry)	(xz, yz)

