Total No. of Questions: 5]

SEAT No.:	
SEAT No. :	

[Total No. of Pages :3

P2675

[5034]-11 M.Sc. I

ELECTRONIC SCIENCE

ELIUT01: Foundation of Semiconductor Devices (2008 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right side indicate full marks.
- 3) Draw neat diagrams wherever necessary.
- 4) Use of non-programmable calculator is allowed.

Q1) Attempt any two of the following:

 $[2 \times 8 = 16]$

- a) What is ambipolar transport? Derive the ambipolar transport equation. State application of it.
- b) What is distribution function? Explain Fermi-Dirac probability function at absolute zero and higher temperature.
- c) Explain low frequency small signal two port equivalent circuit of BJT.

Q2) Attempt any two of the following:

 $[2 \times 8 = 16]$

- a) Define the following terms:
 - i) lattice
 - ii) basis
 - iii) primitive vector.

For a bcc lattice of identical atoms with a lattice constant of 5A. Calculate maximum packing fraction and radius of atom. Assume atoms are hard spheres with nearest neighbours touching.

- b) Explain principle of LED with energy level diagram. Why specific materials are used in LED?
- c) Explain depletion mode and enhancement mode of MOSFETS. Show diagrametically I_D - V_{DS} relationship for n-channel depletion mode MOSFET.

Q3) Attempt any four of the following:

 $[4 \times 4 = 16]$

- a) Define Miller indices of crystal planes. What are its applications?
- b) Describe concept of excess carrier generation and recombination rate across a semiconductor.
- c) Explain concept of buit in potential
 - i) under zero bias
 - ii) forward bias and
 - iii) reversed bias
- d) Explain construction and energy level diagram of HBT. What are its special feature over BJT?
- e) Explain the operation of MOS capacitor with suitable diagram.

Q4) Attempt any four of the following:

 $[4 \times 4 = 16]$

- a) Explain the position of Fermi-level in extrinsic semiconductor. Draw energy band diagram with suitable equations.
- b) Explain zener effect and avalanche effect in a reverse biased pn junction.
- c) Explain SCR structure, obtain relationship for switching action of SCR using two transistor equivalent model.
- d) Following are transistor parameters

 $I_E = 1$ mA, $\beta = 100$, $C_{je} = 1$ PF, total emitter to collector time delay $\tau_{ec} = 103.9$ PS at T = 300 k

Find: i) emitter resistance r_a

- ii) cut off frequency f_{T}
- iii) beta cutoff frequency f_{β}

Given $K = 8.62 \times 10^{-5} \text{ ev/k}$.

e) Describe internal pinch off voltage and pinch off voltage of JFET, Give suitable mathematical relationships.

Q5) Attempt any four of the following:

$$[4 \times 4 = 16]$$

a) Calculate first three energy levels of an electron in an infinite depth potential well of width 6A.

Given
$$\hbar = 1.054 \times 10^{-34} \text{ JS}.$$

$$m_e = 9.11 \times 10^{-31} \text{ kg}.$$

- b) Explain concept of effective mass.
- c) Draw and explain I-V characteristic of a pn junction diode obtain expression for ideal diode equation of pn junction.
- d) Explain Eber-moll model for BJT with equivalent circuit diagram.
- e) Explain small-signal equivalent circuit for MOSFET amplifier. Obtain drain current relationship with $V_{\rm gs}$.

