Total No. of Questions	: 8]

[Total No. of Pages : 3

P1246

[5121]-45

M.A./M.Sc. (Semester - IV)

MATHEMATICS

MT - 805 : Lattice Theory

(2008 Pattern)

Time: 3 Hour [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Let No be the set of all non-negative integers. Define $m \le n$ if and only if there exists $k \in N_0$ such that n = km.

Prove that N_0 is a lattice under this relation.

[6]

- b) Let L be a lattice then prove that I is a proper ideal of L if and only if there is a join-homomorphism ϕ of L onto C_2 such that $I = \phi^{-1}(0)$. [6]
- c) Prove that every meet homomorphism is isotone. Is the converse true? Justify? [4]
- Q2) a) Prove that every homomorphic image of a lattice L is isomorphic to a suitable quotient lattice of L.[6]
 - b) Let L be a lattice and let I be nonempty subset of L. Prove that I is an ideal if and only if a, b ε I implies that avb ε I, and a ε I, $x \varepsilon$ L, $x \varepsilon$ a imply that $x \varepsilon$ I.
 - c) Let θ be a congruence relation of lattice L Then prove that for every asL. [a] θ is a convex sublattice. [5]
- Q3) a) Let L and k be the lattices. Let θ be a congruence relation of L and let ϕ be a congruence relation of k. Define the relation $\theta \times \phi$ on L \times K by [7] $\langle a,b \rangle \equiv \langle c,d \rangle$ ($\theta \times \phi$) if and only if $a \equiv c$ (θ) and $b \equiv d(\phi)$.

Then prove that $\theta \times \phi$ is a congruence relation on $L \times K$. Also, show that every congruence relation of $L \times K$ is of this form.

b) Prove that the following inequalities hold in any lattice.

[5]

- i) $(x \wedge y)v(x \wedge z) \leq x \wedge (yvz)$
- ii) $(x \wedge y)v(x \wedge z) \leq x \wedge (yv(x \wedge z))$
- c) Prove that the dual of a distributive lattice is distributive [4]
- **Q4)** a) Let L be a pseudocomplemented meet semilattice, and $S(L) = \{a^*/a \in L\}$

Then prove that [6]

- i) $a \in S(L)$ if and only if $a = a^{**}$
- ii) $a,b \in S(L)$ implies that $a \land b \in S(L)$.
- b) Prove that in a distributive lattice L, if the ideals IVJ and I ^ J are principal, then so are I and J. [6]
- c) Prove that every distributive lattice is modular, but not conversely. Find the smallest modular but nondistributive lattice. [4]
- **Q5)** a) Prove that a lattice L is modular if and only if it does not contain a pentagon. [8]
 - b) Let L be a pseudocomplemented meet-semilattice and let a,b ∈ L. Then verify the formulas [4]

$$(a \land b)^* = (a^{**} \land b)^* = (a^{**} \land b^{**})^*$$

- c) Prove that every complete lattice is bounded. Is the converse true? Justify. [4]
- **Q6)** a) Let L be an finite distributive lattice. Then prove that the map $\phi : a \to r$ (a) is an isomorphism between L and H (J(L)), the set of all hereditary subsets of the set of all nonzero join-irreducible elements of L. [8]
 - b) Prove that every modular lattice satisfies both the upper and the lower covering conditions. [5]
 - c) Give an example of a lattice which is semi-modular but not modular.[3]

- **Q7)** a) State and prove fixed point theorem for complete lattices. [8]
 - b) Let L be a lattice of finite length. If L is semimodular, then prove that any two maximal chains of L are of the same length. [8]
- Q8) a) Prove that a lattice is distributive if and only if it is isomorphic to a ring of sets.[8]
 - b) Let L be a lattice and $a,b \in L$. If amb in L and bMa in the dual of L. Then prove that $[a \land b, b] \cong [a, avb]$ [8]

