SEAT No.:	SEAT No.	:	
-----------	----------	---	--

P1242

[Total No. of Pages: 2

[5121]-41 M.A./M.Sc. MATHEMATICS

MT - 801 : Field Theory

(2008 Pattern) (Semester - IV)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions of the following.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Let p(x) be an irreducible polynomial in F(x) and 'u' be a root of f(x) in an extension E of F. Then prove that F(u), the subfield of E generated by F and u is the set

$$\{b_0 + b_1 u + \dots + b_m u^m / b_0 + b_1 x + \dots + b_m x^m \in F[x]\}$$

Further show that if degree of p(x) in 'n' then $\{1, u, \dots, u^{n-1}\}$ forms a basis of F(u) over F.

- b) Define normal extension and illustrate it by an example. [5]
- c) Is $f(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$ irreducible over \mathbb{Z}_2 . [3]
- **Q2)** a) If K is a splitting field of $f(x) \in F[x]$ over F then show that K is an algebraic extension of F. [8]
 - b) If $p(x) = x^2 x 1 \in \mathbb{Z}_3[x]$, then show that there exist an extension K to \mathbb{Z}_3 with nine elements having all roots of p(x). [8]
- Q3) a) Show that doubling the cube and squaring the circle are impossible by using rural and compass.[8]
 - b) Determine the minimal polynomial over Q for the element $\sqrt{-1+\sqrt{2}}$. [5]
 - c) Construct a field with 4-elements. [3]
- **Q4)** a) If E is a Galois extension of F and K is any subfield of E containing F then with usual notation prove that $K = E_{G(E/k)}$. [8]
 - b) Let E be an extension of a field F. Define the group of F-automorphisms of E with an example. [5]
 - c) Examine whether the polynomial $x^4+x+1 \in Q(x)$ is a separable polynomial. [3]

- **Q5)** a) If K is a field of characteristic $p \ne 0$ and if K is a perfect field then show that $K^p = K$.
 - b) If $[F(\alpha) : F]$ is odd then prove that $F(\alpha)=F(\alpha^2)$. [4]
 - c) Prove that $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{2} + \sqrt{3}$ are algebraic over Q. [4]
- **Q6)** a) Determine the splitting field and it's degree over Q for the polynomial $f(x) = x^4 2$. [8]
 - b) Let E be the splitting field of $x^n a \in F[x]$, then prove that G(E/F) is solvable group. [8]
- **Q7)** a) Show that the group $G = G(Q(\sqrt[3]{2})/Q)$ of Q-automorphisms of $Q(\sqrt[3]{2})$ is trivial. [8]
 - b) State the fundamental theorem of Galois theory. [4]
 - c) Let $F = Q(\sqrt{2})$ and $E = Q(\sqrt[4]{2})$. Show that E is a normal extension of F and F is a normal extension of Q but E is not a normal extension of Q.[4]
- **Q8)** a) Show that a finite field F of pⁿ elements has exactly one subfield with p^m elements for each divisor m of n. [6]
 - b) Determine Galois group of $f(x) = x^3 x + 1 \text{ EQ}[x]$ over Q. [5]
 - c) Show that $Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$. [5]

