Total No.	of Questions	: 8]	
-----------	--------------	------	--

SEAT No.:	
SEAT NO	

[Total No. of Pages: 3

P1899

[4921]-403 M.A/M.Sc.

MATHEMATICS

MT - 803 : Differential Manifolds (2008 Pattern) (Semester-IV)

Time: 3 Hours | [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Define volume of a parametrized manifold and prove that it is invariant under reparametrization.[6]
 - b) Give an example of an alternating tensor on \mathbb{R}^n . [5]
 - c) State the generalized Stokes theorem. [5]
- **Q2)** a) Define the differential operator d and prove that for $f: \mathbb{R}^n \to \mathbb{R}$ of class

$$C^{\infty}$$
, $df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$ [6]

b) Let f, g be tensors on \mathbb{R}^4 defined by

$$f(x, y, z) = x_1 y_2 z_3 - x_2 y_3 z_1$$
 and

$$g(u,v) = 2 u_{1}v_{3} - u_{4}v_{2}$$

Find $f \otimes g$ and express it as a linear combination of elementary 5-tensors [5]

c) If
$$\eta = x y dx + e^y x z^2 dy + x \cos y dz$$
, then find d η . [5]

- **Q3)** a) Let k > 1. If M is an orientable k-manifold with non-empty boundary, then prove that ∂ M is orientable. [7]
 - b) If w = yz dx + x z dy + xy dz and $\eta = e^y x dx + \sin x \cdot z dy + xyz dz$, then find $w \wedge \eta$ [5]
 - c) Find the centroid of the parametrised curve α (t) = (a cost, a sint), $0 < t < \pi$ [4]
- **Q4)** a) Define 'Exact form' and give an example. [6]
 - b) State Green's theorem for 2-manifolds in \mathbb{R}^2 [5]
 - c) Let $w = x y dx + z^2 dy + yz dz$ and $\alpha(u,v) = (u+v, u-v, uv)$. Find $\alpha^*(dw)$ [5]
- **Q5)** a) For any k- form w, prove that d(dw)=0 [8]
 - b) Let $A = (0, 1)^3$. Let $\alpha: A \to \mathbb{R}^4$ be given by the equation α (s, t, u)= (s, u, t,(2u-t)^2). Let Y be the image set of α . Evaluate the integral over Y_{α} of the 3-form

$$x_1 dx_1 \wedge dx_4 \wedge dx_3 + 2x_2x_3 dx_1 \wedge dx_2 \wedge dx_3.$$
 [8]

- **Q6)** a) Let A be an set in \mathbb{R}^k . Let α : $A \to \mathbb{R}^n$ be of class C^{∞} . If w is an 1-form defined in an open set of \mathbb{R}^n containing α (A), the prove that $\alpha^*(dw) = d(\alpha^*w)$
 - b) Give an example of a 3-manifold in \mathbb{R}^3 . [4]
 - c) Find area of the 2-sphere $s^2(a)$ of radius a in \mathbb{R}^3 [4]

Q7) a) With usual notation, prove that

d (w $\wedge \eta$) = dw $\wedge \eta$ +(-1)^k w \wedge d η where w and η are forms of order k and *l* respectively [8]

- b) Justify whether true or false: If f and g are alternating tensors, then $f \otimes g$ is also an alternating tensor. [4]
- c) Define 'closed form' and give an example. [4]
- **Q8)** a) Define boundary of a manifold and give an example of a 2-manifold in \mathbb{R}^3 without boundary. [6]
 - b) For a k-tensor F on \mathbb{R}^n , if

$$AF = \sum_{6} (sign 6) F^{6}$$
, then prove that AF is an alternating tensor [5]

c) Let $\alpha : \mathbb{R}^3 \to \mathbb{R}^6$ be given by $\alpha(x, y, z) = (x^2y, y^2z, x^2z, x, y, z)$

Find
$$d\alpha_1 \wedge d\alpha_3 \wedge d\alpha_5$$
 [5]

