Total No.	of Questions	:	8]	
-----------	--------------	---	----	--

SEAT No. :	
------------	--

[Total No. of Pages: 3

P1901 [4921]-405

M.A/M.Sc. MATHEMATICS

MT - 805 : Lattice Theory (2008 Pattern) (Semester-IV)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Let \mathbb{N}_0 be the set of all non-negative integers. Define $m \le n$ if there exists $k \in \mathbb{N}_0$ such that n = km. Prove that \mathbb{N}_0 is a lattice under this relation.[5]
 - b) Let I be an ideal and let D be a dual ideal. If $I \cap D \neq \emptyset$ then show that $I \cap D$ is a convex sublattice and every convex sublattice can be expressed in this form in one and only one way. [5]
 - c) Prove that Con(L), the set of all congruence relations of a lattice L, is a lattice.
- **Q2)** a) Prove that a lattice L can be embedded in the ideal lattice Id(L) and this embedding is onto if L is finite. [6]
 - b) Show that the chain with five elements $C_5 \cong L \times K$ then L or K has only one element. [2]
 - c) Prove that the lattice L is modular if and only if it does not contain a sublattice isomorphic to N_5 . [8]
- **Q3)** a) Let L be a pseudocomplemented lattice, $S(L) = \{a^* | a \in L\}$. Then prove that the partial ordering of L parially orders S(L) and makes S(L) into a Boolean lattice. For $a,b \in S(L)$, we have $a \land b \in S(L)$ and the join in S(L) is described by $a \lor b = (a^* \land b^*)^*$
 - b) Define homomorphism of lattices and prove that a homomorphic image of a lattice L is isomorphic to a suitable quotient lattice of L. [8]

Q4) a) Show that the following inequalities hold in any lattice

- i) $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z);$
- ii) $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee (x \wedge z)).$
- b) Let L and K be lattices, let θ be a congruence relation of L, and let ϕ be a congruence relation of K. Define the relation $\theta \times \phi$ on $L \times K$ by $\langle a,b \rangle \equiv \langle c,d \rangle$ ($\theta \times \phi$) if and only if $a \equiv c(\theta)$ and $b \equiv d(\phi)$. Then show that $\theta \times \phi$ is a congruence relation on $L \times K$ and conversely, every congruence relation of $L \times K$ is of this form.
- c) Prove that in a distributive lattice L, if the ideals $I \vee J$ and $I \wedge J$ are principal then so are I and J. [6]
- **Q5)** a) Let L be a distributive lattice with 0. Show that $a^{\perp} = \{x \in L \mid x \land a = 0\}$ is an ideal of L.
 - b) Prove that a maximal ideal of a distributive lattice is prime but not conversely. [4]
 - c) State and prove Nachbin theorem. [8]
- **Q6)** a) Prove that every finite distributive lattice is isomorphic to ring of sets. [8]
 - b) Let L be a distributive lattice, let I be an ideal, let D be a dual ideal of L, and let $I \cap D = \emptyset$. Then prove that there exists a prime ideal P of L such that $P \supseteq I$ and $P \cap D = \emptyset$.
- Q7) a) State and prove Jordan-Hölder Theorem for semimodular lattices. [7]
 - b) Prove that every modular lattice satisfies the upper covering conditions. [5]
 - c) Prove that the dual of a distributive lattice is distributive. [4]

- Q8) a) Prove that every prime ideal is a meet-irreducible element of a ideal lattice but not conversely.[6]
 - b) Prove that a lattice L is distributive if and only if for any two ideals I, J of $L, I \lor J = \{i \lor j | i \in I, j \in J\}$. [5]
 - c) Let $\langle P; \leq \rangle$ be a poset in which inf H exists for all $H \subseteq P$. Show that $\langle P; \leq \rangle$ is a lattice. [5]

