Total No. of Questions	8	
------------------------	----------	--

P1893

SEAT No.:	

[Total No. of Pages :3

[4921] - 302

M.A./M.Sc.

MATHEMATICS

MT - 702: Ring Theory

(2008 Pattern) (Semester -III) (Old Course) (Non Credit Course)

Time: 3 Hours [Max. Marks:80

Instructions to the candidates:

- Attempt any five questions. 1)
- Figures to right indicate full marks.
- **Q1)** a) Prove that any subring of a field which contains the identity is an integral domain. Is the converse true? [6]
 - If $a \in z$ is an integer then prove that the element $\overline{a} \in \frac{z}{nz}$ is nilpotent if b) and only if every prime divisor of n is also a divisor of a. In particular determine the nilpotent elements of the ring $\frac{Z}{127}$. [6]
 - Prove that each Boolean ring is commutative. [4] c)
- If $\phi: R \to S$ is a ring homomorphism then show that **Q2)** a)
 - Kernel of ϕ is an ideal of R i)
 - Image of ϕ is a subring of S ii)

iii)
$$\frac{R}{kcer\phi} \simeq \phi(R)$$
. [6]

- Prove that the ring 2z and 3z are not isomorphic. b) [6]
- Find all homomorphic images of Z. [4] c)

- Q3) a) If R is a commutative ring with unity 1. Then prove that an ideal M of R is maximal ideal if and only if the quotient ring $\frac{R}{M}$ is a field. [8]
 - b) Show that the ideal I = (2, x) generated by 2 and x in Z[x] is not a principal ideal. [4]
 - c) If $P(x) = x^2 + x + 1$ is an element of the polynomial ring $R = Z_2[x]$ then prove that the quotient ring $\overline{R} = \frac{Z_2[x]}{(x^2 + x + 1)}$ has 4 elements and additive group of \overline{R} is isomorphic to Klein 4 group. [4]
- **Q4)** a) If A_1 and A_2 are comaximal ideals in the ring R then prove that

$$\frac{R}{A_1 A_2} = \frac{R}{A_1 \cap A_2} \simeq \frac{R}{A_1} \times \frac{R}{A_2}.$$
 [10]

- b) Prove or disprove [6]
 - i) If R is a field then its field of fractions is also R.
 - ii) If R = 2Z in the ring of even integers then its field of fraction is Q, the set of retionals.
 - iii) If R and S are non zero rings then R×S can be a field.
- **Q5)** a) Prove that every ideal in a Euclidean domain is principal. [8]
 - b) Using above result (a), show that the ring $Z[\sqrt{-5}]$ is not Euclidean domain. [6]
 - c) Prove that the quotient ring $\frac{Z(i)}{(1+i)}$ is a finite ring and find its all elements. [2]

- Q6) a) Prove that in a PID a non zero non unit element is prime if and only if it is an irreducible.[8]
 - b) If a = 3 + 2i and b = 2 3i are two elements in Z[i] then find q and r in Z[i] such that a = bq + r and N(r) < N(b) where $N(x + iy) = x^2 + y^2$.
 - c) If the prime number p is either 2 or is an odd prime congruent to 1 modulo 4 then prove that p divides an integer of the form $n^2 + 1$. [4]
- Q7) a) If R is a PID then prove that there exist a multiplicative Dedekind Hasse norm on R. [8]
 - b) If F is a field then prove that the set R of polynomials in F(x) whose coefficient of x is equal to zero is a subring of F[x] and that R is not UFD.
 - c) Prove or disprove. [2] The ring Z[2i] is a UFD.
- **Q8)** a) Find all monic irreducible polynomials of degree ≤ 2 . [4]
 - b) Let I be a proper ideal in the integral domain R and let P(x) be a nonconstant monic polynomial in R[x]. If the image of P(x) in $\frac{R}{I}[x]$ cannot be factored in $\frac{R}{I}[x]$ into two polynomials of smaller degrees then show that P(x) is irreducible in R[x].
 - c) Show that the polynomial $x^3 + x + 1$ is irreducible in Z[n]. [4]

68506850