[5121]-35

M.A./M.Sc. (Semester - III)
 MATHEMATICS
 MT-705: Graph Theory
 (2008 Pattern)

Time: 3 Hour]
[Max. Marks : 80
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Show that every set of six people contains at least three mutual acquaintances or three mutual strangers.
b) Prove that every graph with n vertices and k edges has at least $n-k$ components.
c) Prove that an edge is a cut edge if and only if it belongs to no cycle. [6]

Q2) a) Find the number of simple graphs with a vertex set X of size n.
Draw all the non isomorphic simple graphs on a fixed set of four vertices.
b) Prove that the Petersen graph has ten 6-cycles.
c) Prove that a graph is bipartite if it has no odd cycle.

Q3) a) Prove that for a connected nontrivial graph with exactly 2 k odd vertices, the minimum number of trails that decompose it is $\max \{\mathrm{k}, 1\}$.
b) Show that if G is a simple n - vertex graph with $\delta(G) \geq \frac{(n-1)}{2}$, then G is connected
c) Show that the number of vertices in a self-complementary graph is either $4 k$ or $4 k+1$, where k is a positive integer.

Q4) a) Prove that if T is a tree with k edges and G is a simple graph with $\delta(G) \geq \mathrm{k}$ then T is a subgraph of G.
b) Show that every graph has an even number of vertices of odd degree.
c) Show that there exists a simple graph with 12 vertices and 28 edges such that the degree of each vertex is either 3 or 5 . Draw this graph.

Q5) a) Prove that the center of a tree is a vertex or an edge.
b) Let T be a tree with average degree a. Determine $n(T)$ in terms of a.
c) Prove that if G is a simple graph with $\operatorname{diam} \mathrm{G} \geq 3$, then $\operatorname{diam} \bar{G} \leq 3$.

Q6) a) Prove that if G is a bipartite graph, then the maximum size of a matching in G equals the minimum size of a vertex cover of G.
b) Use Dijkstra's algorithm to find shortest distance from a vertex 1 to any other vertex in the following graph

Q7) a) Prove that in a connected weighted graph G, Kruskal's Algorithm constructs a minimum-weight spanning tree.
b) Determine whether the sequence (5, 5, 4, 3, 2, 2, 2, 1) is graphic. Provide a construction or a proof of impossibility.
c) Show that the connectivity of the hypercube Q_{k} is k.

Q8) a) Prove that every component of the symmetric difference of two matchings is a path or an even cycle.
b) Define clique number and independence number of a graph G with an example. Prove that for every graph $G, \chi(G) \geq \omega(G)$ and where $\omega(G)$ is the clique number of G and $\propto(G)$ is the independence number of G.
c) Prove that if G is a connected graph, then an edge cut F is a bond if and only if $G-F$ has exactly two components.
[6]

$\ominus \ominus \ominus$

$$
\chi(G) \geq \frac{n(G)}{\alpha(G)}
$$

