Total No	. of Questions	:	8]
-----------------	----------------	---	----

SEAT No.:	

[Total No. of Pages: 3

P1258 [5121]-302

M.A./M.Sc. (Semester - III) MATHEMATICS

MT-702: Field Theory

(2013 Pattern) (Credit System)

Time: 3 Hours | [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Let α be an algebraic over a field F and F (α) be the field generated by α over F then prove that, $F(\alpha) \cong F[x]/\langle m_{\alpha}(x) \rangle$ hence show that $[F(\alpha); F] = \deg(m_{\alpha}(x))$ where $M_{\alpha}(x)$ is minimal polynomial for α over F.
 - b) Show that $P(x) = x^2 + 1$ is an irreducible polynomial over the field Z_3 . Find an extension K of Z_3 in which P(x) has a root. [3]
 - c) Show that the characteristic of a field F is either zero or a prime. [2]
- **Q2)** a) Prove that the extension K/F is finite if and only if K is generated by a finite number of algebraic elements over F. [5]
 - b) Show that $[Q(\sqrt[6]{2}):Q] = 6$ and hence show that $x^3 \sqrt{3}$ is irreducible polynomial over $Q(\sqrt{2})$. [3]
 - c) Determine the degree of $\alpha = 2 + \sqrt{3}$ over Q. [2]
- **Q3)** a) Find the splitting field of $f(x) = x^4 2 \in \mathbb{Q}[x]$ over Q and it's degree of extension. [5]

P.T.O.

- b) Suppose α is a rational root of a monic polynomial in Z[x] then prove that α is an integer. [3]
- c) Determine wether the polynomial $p(x) = (x-2)^2 \in \mathbb{Q}[x]$ is separable over Q. [2]
- Q4) a) Let $\phi: F \to G$ be an isomorphism of fields. Let $f(x) \in F[x]$ and $g(x) \in G[x]$ be the polynomial obtained by applying ϕ to the coefficients of f(x). Let E_1 be a splitting field for f(x) over f and F and F be splitting Hing Field F or f and f over f and f be splitting to an ismorphism. f is f and f is f and f is f and f is f in f is f and f is f in f is f in f in f in f in f in f in f is f in f in
 - b) Define algebraic closure of a field. If K is an algebraically closed field and F is a subfield of K then prove that the collection of elements of K that are algebraic over F is an algebraic closure of F. [3]
 - c) Show that doubling the cube is impossible by using straightfedge and compass. [2]
- **Q5)** a) Let E be the splitting field over F of the polynomial $f(x) \in F[x]$ then prove that Aut (K/F) \leq [E:F].
 - b) Find all automorphisms of $Q(\sqrt{2})$ over Q. Is the extension $Q(\sqrt{2})$ of Q Galois? [3]
 - c) Prove that $Q(\sqrt{2})$ and $Q(\sqrt{3})$ are not isomorphic. [2]
- **Q6)** a) Show that the Galois group of $x^3 2 \in \mathbb{Q}[x]$ is the symmetric group on three lefters. [5]
 - b) Show that any quadratic extension K of any field F of characterisitic not equal to two is Galois. [3]
 - c) Find the discriminant D of a polynomial $f(x) = x^3 x + 1$ in Q [x]. [2]

- **Q7)** a) State the fundamental theorem of Galois theory. [5]
 - b) Prove that any cyclic extension of degree n over a field F of characteristic not dividing n which contains the nth root of unity is of the form $F(\sqrt[n]{a})$ for some $a \in F$.
- **Q8)** a) Show that the field $F_p n$ is the splitting field of $x^{p^n} x$ over F_p with cyclic Galois group of order 'n' generated by the Frobenius automorphims σ_p . Hence show that the subfield of $F_p n$ are all Galois over F_p . [5]
 - b) Show that the field generated over F by α and β is the field generated by β over the field F(α) generated by α . [5]

