		_
\mathbf{n}_{1}	01	Λ
$\boldsymbol{\nu}$	VI.	
		\ /

[Total No. of Pages :3

[4921]-2005 M.A/M.Sc.

MATHEMATICS

MT-605: Partial Differential Equations (2013 Pattern) (Credit System) (Semester - II)

Time: 3 Hours] [Max. Marks:50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Eliminate the arbitrary function F from the equation F(x-z, y-z) = 0 and find the corresponding partial differential equation. [3]
 - b) Define the following terms and example of each [2]
 - i) Linear equation.
 - ii) Quasi linear equation.
 - c) Find the general integral of

 $y^2 p - xyq = x(z - 2y).$

Q2) a) Prove that the Pfaffian differential equation \overline{V} $\overline{V$

 $\overline{X} \cdot d\overline{r} = P(x, y, z)dz + Q(x, y, z)dy + R(x, y, z)dz = 0$ is integrable if and only if $\overline{X} \cdot \text{curl } \overline{X} = 0$.

b) Find the general integral of the partial differential [3]

 $(2xy-1)p+(z-2x^2)q=2(x-yz)$ and also the particular integral which passes through the line x=1, y=0.

c) Show that the equations xp - yq = x and $x^2p + q = xz$ are compatible. [2]

[5]

[5]

- **Q3)** a) Explain the method of solving the following first order partial differential equation g(x, p) = h(y, q). [4]
 - b) Find a complete integral of $f = x^2 pqxy = 0$ by Charpit's method. [4]
 - c) Find a complete integral of the partial differential equation $pqz = p^2(xq + p^2) + q^2(yp + q^2).$ [2]
- **Q4)** a) Explain the Jacobi's method for solving a partial differential equation [5] $f(x, y, z, u_x, u_y, u_z) = 0.$
 - b) Find a one parameter family of common solutions of the equtions xp = yq and z(xp + yq) = 2xy. [3]

c) Solve
$$\frac{\partial^2 z}{\partial x \partial y} = x^2 y$$
. [2]

- **Q5)** a) Solve the Cauchy problem for $2z_x + yz_y = z$ for the initial data curve $C: x_0 = s, y_0 = s^2, z_0 = 1, 1 \le s \le 2$. [3]
 - b) Reduce the equation $4u_{xx} 4u_{xy} + 5u_{yy} = 0$ to canonical form. [3]
 - c) Prove that the solution of the Dirichlet problem, if it exists is unique. [4]
- **Q6)** a) Using D' Alemberts solution of infinite string find the solution of [5]

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}, 0 < x < \infty, t > 0$$

$$y(x,0) = u(x), y_t(x,0) = v(x), x \ge 0$$

 $y(0,t) = 0, t \ge 0$

- b) State and prove Harnack's theorem.
- c) Is the surface $x^2 + y^2 + z^2 = cx^{2/3}$ equipotential? If yes, then find potential function. [2]

[3]

- **Q7)** a) Using the variable separable method solve $u_t = ku_{xx}$; 0 < x < a, t > 0 which satisfies condition u(0,t) = u(a,t) = 0; t > 0 and u(x,0) = x(a-x); $0 \le x \le a$.
 - b) To find solution of $\nabla^2 u = u_{xx} + u_{yy} = 0, -\infty < x < \infty, y > 0$ $u_y(x,0) = g(x), -\infty < x < \infty \text{ with the conditions that } u(x,y) \text{ is bounded as}$ $y \to \infty, u \text{ and } u_x \text{ vanish as } |x| \to \infty \text{ and } \int_{-\infty}^{\infty} g(x) dx = 0.$ [5]
- **Q8)** a) State and prove Kelvin's inversion theorem. [5]
 - b) To find solution of $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$ r < a, subject to the boundary [5]

$$\frac{\partial u}{\partial r} = f(\theta)$$
 on $r = a$, $\int_{0}^{2\pi} f(\theta) d\theta = 0$.

888