SEAT No.:	
-----------	--

[Total No. of Pages:3

[4921] - 203 M.A./M.Sc.

MATHEMATICS

(MT - 603): Groups and Rings (2008 Pattern) (Semester -II)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) If G be a finite group and $a, b \in G$, then prove the order (ab) = order (ba).
 - b) Define a subgroup. Let H be finite subset of a group G. Then prove that H is a subgroup of G if and only if H is closed under the operation of G.
 - c) Prove that any cyclic group is isomorphic to either \mathbb{Z}_n for some $n \in \mathbb{N}$ or \mathbb{Z} . Also find all the generators of \mathbb{Z}_{25} .
- **Q2)** a) Prove that $(\mathbb{Z}[x],+)$ and $(\mathbb{Q}^+,.)$ are isomorphic. [5]
 - b) Give an example of an infinite group whose every element is of finite order. Justify the answer. [5]
 - Prove that every subgroup of a cyclic group is cyclic. Moreover prove that, if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k.

- Q3) a) Define Centralizer of an element of a group G, prove that for each a in group G, the centralizer of a is a subgroup of G.[5]
 - b) Prove that is G if a group, then set of automorphisms of G, Aut (G) is a group. [5]
 - c) Find Aut (\mathbb{Z}_4) , the group of automorphisms of \mathbb{Z}_4 . [6]
- **Q4)** a) Find the inverse and the order of each of the following permutations in S_{12} [5]
 - i) (5 3 4 7) (2 1 6)
 - ii) (9 2 10 4) (7 1 5) (3 8 12).
 - b) Prove that set of even permutations A_n forms a subgroup of S_n . Also prove that for n > 1, A_n has order n!/2. [5]
 - c) Let G be a finite group and p be a prime. If p^k divides |G|, then prove that G has at least one subgroup of order p^k . [6]
- Q5) a) State and prove the first isomorphism theorem. [5]
 - b) Give an example of a non abelian group whose all proper subgroups are abelian. [5]
 - c) If $\tau = (1 \ 5 \ 4) \ (2 \ 7)$, $\rho = (128756)(34) \in S_8$. Then find $\tau^{-1}\rho\tau$ and $\rho^{-1}\tau\rho$.

- **Q6)** a) Prove that every group is isomorphic to a subgroup of S_n for some $n \in \mathbb{N}$.
 - b) Determine all the homomorphisms from \mathbb{Z}_{10} to \mathbb{Z}_{20} . [5]
 - c) Find all the non isomorphic abelian groups of order 2016. [6]
- Q7) a) Determine all the groups of order 15. [5]
 - b) Let H be an index 2 subgroup of group G. Prove that $a^2 \in H$, $\forall a \in G$. [5]
 - c) Let G be a finite group of permutations of a set S. Then prove that for any i from S, $|orb_{G}(i)| = |stab_{G}(i)|$. [6]
- **Q8)** a) If G is a finite abelian group, then what is the product of all the elements in G? Justify your answer. [5]
 - b) Define homomorphism and kernel of a homomorphism. Prove that every normal subgroup of a group G is the kernel of a homomorphism of G. [5]
 - c) Prove that the groups of order 20 and 27 are not simple. [6]

6850