	•	
D1201		
P1391		

SEAT No.:	
[Total	No. of Pages: 3

[5221]-21 M.A./M.Sc.

MATHEMATICS

MT - 601 : General Topology (2008 Pattern) (Old course) (Semester - II)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Let \mathbb{B} be a collection of non-empty sets (not necessarily disjoint). Prove that the exists a function

$$c: {\mathbb B} \to \bigcup_{B \in {\mathbb B}} B$$

Such that c(B) is an element of B, for each $B \in B$. [8]

- b) Prove that the topology \mathbb{R}_{l} on \mathbb{R} is strictly finer than the standard topology on \mathbb{R} .
- c) Suppose X and Y are two topological spaces. Show that the collection.

$$S = \{\pi_1^{-1}(\bigcup) | \bigcup \text{is open in } X\} \cup \{\pi_2^{-1}(V) | \text{V is open in } Y\}$$

forms a sub basis for product topology on $X \times Y$. [4]

- **Q2)** a) If $\{\tau_{\alpha}\}$ is a family of topologies on X, show that $\cap \tau_{\alpha}$ is a topology on X. Is $\cup \tau_{\alpha}$ a topology on X. Justify. [6]
 - b) Prove that the order topology on \mathbb{Z}_+ is the discrete topology on \mathbb{Z}_+ .[6]
 - c) Let Y = [-1,1], which of the following sets are open in Y? Which are open in \mathbb{R} ? Justify.

i)
$$A = \left\{ x | \frac{1}{2} \le |x| \le 1 \right\}$$

ii)
$$B = \left\{ x | \frac{1}{2} < |x| \le 1 \right\}.$$
 [4]

- **Q3)** a) Let A be a subset of the topological space X. Prove that $x \in \overline{A}$ if and only if every open set U containing x intersects A. [6]
 - b) Let X be a space satisfying T₁ axiom and A be a subset of X. Prove that the point x is a limit point of A if and only if every neighbourhood of x contains Infinitely many points of A. [6]
 - c) Show that every simply ordered set is a Hausdorff space in the order topology. [4]
- **Q4)** a) Prove that every finite point set in a Hausdorff space X is closed. [6]
 - b) Show that the topological space X is Hausdorff if and only if the diagonal $\Delta = \{x \times x | x \in X\}$ is closed in X×X. [6]
 - c) State and prove the pasting lemma. [4]
- **Q5)** a) Let A be any set, X and Y be two topological spaces with $f: A \to X \times Y$ defined by $f(a) = (f_1(a), f_2(a))$. Then show that f is continuous if and only if f_1 and f_2 are continuous, where $f_1: A \to X$ and $f_2: A \to Y$. [8]
 - b) Prove that the image of a connected space under a continuous map is connected. [4]
 - c) Let $\{A_n\}$ be a sequence of connected subspaces of X such that $A_n \cap A_{n+1} \neq \emptyset$, for all n. Show that $\bigcup_n A_n$ is connected. [4]

Prove that a topological space X is locally connected if and only if for **Q6)** a) every open set \bigcup of X, each component of \bigcup is open in X. [6] Show that the compact subspace of a Hausdorff is closed. b) [6] Define quotient topology and give an example of a quotient map which c) is not an open map. [4] State and prove the tube lemma. [8] **Q7**) a) Prove that compactness implies limit point compactness. Is converse b) true? Justify. [5] Show that not every first countable space is second countable. [3] c) State and prove the Tychonoff theorem. **Q8)** a) [12] b) State: [4] Tietze extension theorem. i) ii) The Urysohn lemma.

&&&&