P1392	
1 1374	

SEAT No.:	

[Total No. of Pages :3

[5221] - 22 M.Sc. / M.A.

MATHEMATICS

MT - 602 : Differential Geometry (2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks:80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- *Q1)* a) Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha: I \to S$ be a parametrized curve in S, let $t_0 \in I$ and $V \in S_{\alpha(to)}$. Prove that there exists a unique vector field V tangent to S along α and $V(t_0) = V$.
 - b) Find the velocity, acceleration and speed of the curve $\alpha(t) = (cost, sint)$.
 - Consider a vector field $X(x_1, x_2) = (x_1, x_2, 1, 0)$ on \mathbb{R}^2 . For $t \in \mathbb{R}$ and $p \in \mathbb{R}^2$, let $\phi_t(p) = \alpha_p(t)$ where α is the maximal integral curve of X through P. Show that $F(t) = \phi_t$ is a homomorphism of additive group of real numbers into the invertible linear maps of the plane. [6]
- **Q2)** a) Let S be a connected n surface in \mathbb{R}^{n+1} . Show that on S there exists exactly two smooth unit normal vector fields N_1 and N_2 . [6]
 - b) Show that the Weingarten map of the n-sphere of radius r oriented by inward normal is multiplication by $\frac{1}{r}$. [5]
 - c) Show that the 1-form n on \mathbb{R}^2 - $\{0\}$ defined by

$$n = \frac{-x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2 \text{ is not exact.}$$
 [5]

P.T.O.

Q3) a) Show that the covariant differentiation has the following property:

$$(X.Y)' = X'.Y + X.Y'$$
 [5]

b) Let $a,b,c,d \in \mathbb{R}$ be such that $ac-b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ on the unit

circle
$$x_1^2 + x_2^2 = 1$$
 are eigen values of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. [6]

- c) If an n-surface S contains a straight line segment, then show that it is geodesic in S. [5]
- Q4) a) Let U be an open subset of \mathbb{R}^{n+1} and $f: U \to \mathbb{R}$ be a smooth function. Let $S=f^{-1}(c)$ $c \in \mathbb{R}$ and $\nabla f(q) \neq 0 \ \forall q \in S$. If $g: U \to \mathbb{R}$ is smooth function and $P \in S$ is an extreme point of g on S, then show that \exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.
 - b) Let S denote a cylinder $x_1^2 + x_2^2 = r^2$ of radius r in \mathbb{R}^3 . Show that α is a geodesic of S if and only if α is of the form $\alpha(t) = (r\cos(at + b), r\sin(at + b), ct + d)$ for some real numbers a, b, c, d.
 - c) Sketch the following vector fields on \mathbb{R}^2 : X(P) = (P, X(P)) where
 - i) X(p) = -p

ii)
$$X(x_1, x_2) = (-x_2, x_1).$$
 [4]

Q5) a) Show that the Weingarten map Lp is self-adjoint (that is

$$L_{p}(v).w = v.L_{p}(w) \ \forall v, w \in S_{p}.$$

b) Find the integral curve of the vector field X given by

$$X(x_p, x_2) = (x_p, x_2, x_2, x_3)$$
 through the point (1, 0). [5]

c) Let $\alpha(t) = (x(t), y(t))$ be a local parametrization of the oriented plane

curve C. Show that
$$Ko\alpha = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{3/2}}$$
. [5]

- **Q6)** a) Prove that on each compact oriented n-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite. [6]
 - b) Show that speed of geodesic is constant. [5]
 - c) Show that the graph of any smooth function $f: \mathbb{R}^n \to \mathbb{R}$ is an n-surface in \mathbb{R}^{n+1} [5]
- **Q7)** a) Let U be an open subset of \mathbb{R}^{n+1} and $f: U \to \mathbb{R}$ be a smooth function. Let $p \in U$ be a regular point of f and let c = f(p). Show that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
 - b) Let C be connected oriented plane curve and $\beta: I \to C$ be a unit speed global parametrization of C. Show that β is either one to one or periodic. [5]
 - c) Find the curvature of the circle with center (a, b) and radius r oriented by outward normal. [5]
- *Q8)* a) Let S be an n-surface in \mathbb{R}^{n+1} and $p \in S$. Prove that there exists an open set V about p in \mathbb{R}^{n+1} and a parametrized n-surface $\phi: U \to \mathbb{R}^{n+1}$ such that ϕ is one to one map from U onto $V \cap S$.
 - b) Let S be the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$ a,b,c all non-zero, oriented by the outward normal. Show that the Gaussian curvature of S is

$$K(p) = \frac{1}{a^2 b^2 c^2 \left(\frac{x_1^2}{a^4} + \frac{x_2^2}{b^4} + \frac{x_3^2}{c^4}\right)}.$$
 [8]

