| Total No. | of ( | Questions | : | 8] |  |
|-----------|------|-----------|---|----|--|
|-----------|------|-----------|---|----|--|

| SEAT No.: |  |
|-----------|--|
|-----------|--|

[Total No. of Pages: 3

P1412

[5221]-201 M.A./M.Sc.

## **MATHEMATICS**

MT - 601: Complex Analysis

(2013 Pattern) (Semester - II) (Credit System)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt ANY FIVE questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) If  $f(z) = f(x+iy) = \sqrt{|x||y|}$ ,  $x, y \in \mathbb{R}$  then show that the function f satisfy C.R. equations at origin but f is not holomorphic at origin. [5]
  - b) If f is holomorphic in a region  $\Omega$  and f' = 0 then prove that f is constant function. [3]
  - c) Find radius of convergence of the series  $\sum_{n=0}^{\infty} \frac{n^2}{4^n + 3n} z^n$ . [2]
- **Q2)** a) Show that the power series  $\sum_{n=1}^{\infty} nz^n$  does not converge on any point of the unit circle. [5]
  - b) If  $\gamma$  be a smooth curve in  $\mathbb{C}$  parametrized by  $z(t) = [a,b] \to \mathbb{C}$  and  $\gamma^-$  denote the curve with same image as  $\gamma$  but with opposite orientation then prove that,  $\int_{\gamma} f(z)dz = -\int_{\gamma} f(z)dz$ . [3]
  - c) If f is continuous function in region  $\Omega$  then prove that any two primitive of f differe by a constant. [2]
- Q3) a) If f is holomorphic in an open set  $\Omega$  that contains a rectangle R and it's interior then prove that  $\int_{\mathbb{R}} f(z)dz = 0$ . [5]
  - b) If f is holomorphic function in  $\Omega^+$  that extend continuously to I and such that f is real valued on I then prove that there exists a function F holomorphic in all of  $\Omega$  such that F = f on  $\Omega^+$ . [3]
  - c) State symmetric principle. [2] *P.T.O.*

**Q4)** a) If f is holomorphic in an open set  $\Omega$ . If D is a disc centered at  $z_0$  and whose closure is contained in  $\Omega$  then prove that f has a power series expansion at  $z_0$ ,  $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \ \forall Z \in D$  where

$$a_n = \frac{f^{(n)}(\mathbf{Z}_0)}{n!}, \forall n \ge 0.$$
 [5]

- b) Show that every non-constant polynomial  $P(z) = a_n z^n + - + a_n$  with complex coefficient has a root in  $\mathbb{C}$ . [3]
- c) State Runge's approximation theorem. [2]
- **Q5)** a) If  $\{fn\}_{n=1}^{\infty}$  is a sequence of holomorphic function that converges uniformly to a function f in every compact subset of  $\Omega$  then prove that f is holomorphic in  $\Omega$ .

b) Show that 
$$\int_{0}^{\infty} \frac{1 - \cos x}{x^2} dx = \frac{\pi}{2}$$
 [5]

- c) Find the nature of isolated singularity of origin for the function  $f(z) = \frac{\sin z}{z}.$  [2]
- **Q6)** a) If f has a pole of order n at  $z_0$ , then prove that

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \frac{a_{-n+1}}{(z - z_0)^{n-1}} + - - - + \frac{a_{-1}}{(z - z_0)} + G(z)$$

Where G is a holomorphic function in a neighborhood of  $Z_0$ . [5]

- b) If f and g are holomorphic in an open set containing a circle C and it's interior and |f(z)| > |g(z)| for all Z in C then prove that f and f + g have the same number of zeros inside a circle C. [3]
- c) State morera's theorem. [2]

- Q7) a) Evaluate the integral  $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$ . [5]
  - b) If f is holomorphic in an open set containing a circle C and it's interior except for poles at the points  $Z_1, Z_2, ---- Z_N$  inside C then prove that

$$\int_{C} f(z)dz = 2\pi i \sum_{k=1}^{N} res_{\Sigma} f.$$
 [5]

**Q8)** a) Show that the complex zeros of  $\sin \pi z$  are exactly at the integers and each of order one.

Also find residue of 
$$\frac{1}{\sin \pi z}$$
 at  $z = n \in \mathbb{Z}$ . [5]

b) Let  $D = \{z \in \mathbb{C}/|z| = 1\}$  and  $f: D \to D$  be holomorphic function then prove that  $|f'(z)| \le \frac{1}{1-|z|} \forall Z \in D$ . [5]

