Total No.	of Questions	:8]
-----------	--------------	-----

SEAT No.:	
-----------	--

P1389

[Total No. of Pages : 3

[5221] - 14 M.A./M.Sc.

MATHEMATICS

MT-504: Number Theory

(2008 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks:80

Instructions to the candidates:

- 1) Attempt any five questions.
 - 2) Figures to the right indicate full marks.
- **Q1)** a) Let p denote a prime. Then prove that $x^2 \equiv -1 \pmod{p}$ has solutions if and only if $p \equiv 2$ or $p \equiv 1 \pmod{4}$.
 - b) Show that the product of three consecutive integers is divisible by 504 if the middle one is cube. [5]
 - c) Determine the value of 999¹⁷⁹ (mod 1763). [5]
- **Q2)** a) If $f(n) = \sum_{d \mid n} \mu(d) F(n/d)$ for every positive integer n then prove that $F(n) = \sum_{d \mid n} f(d)$. [6]
 - b) Find all primes p such that $x^2 \equiv 13 \pmod{p}$ has a solution. [5]
 - c) Let x & y be any two real numbers then prove that [5]
 - i) $[x]+[y] \le [x+y] \le [x]+[y]+1$
 - ii) $[x]+[-x]=\begin{cases} 0 & \text{if } x \text{ is an integer} \\ -1 & \text{otherwise.} \end{cases}$

- **Q3)** a) If p and q are distinct odd primes then prove that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\{(p-1)/2\}\{(q-1)/2\}}.$ [6]
 - b) For every positive integer *n*, prove that $\delta(n) = \prod_{P^{\alpha||n}} \left(\frac{P^{\alpha+1} 1}{P 1} \right)$. [5]
 - c) Prove that if a prime p is a quadratic residue of an odd prime q and p is of the form 4k + 1 then q is a quadratic residue of p. [5]
- **Q4)** a) Show that: [8]
 - i) The norm of product equals the product of norms $N(\alpha\beta) = N(\alpha).N(\beta).$
 - ii) $N(\alpha) = 0$ if and only if $\alpha = 0$.
 - iii) The norm of an integer in $Q(\sqrt{m})$ is a rational integer.
 - b) What is the highest power of 2 dividing 533!. [4]
 - c) Find the minimal polynomial of $1+\sqrt{2}+\sqrt{3}$. [4]
- Q5) a) Prove that every Euclidean quadratic field has the unique factorization property.[8]
 - b) If α is an algebraic integer then prove that there exists an integer b such that $b\alpha$ is an algebraic integer. [4]
 - c) Show that there is no x for which both $x \equiv 29 \pmod{52}$ and $x \equiv 19 \pmod{72}$. [4]
- **Q6)** a) State and prove the Chinese remainder theorem. [6]
 - b) Find all integers x & y that satisfy 147x + 258y = 369. [5]
 - c) Evaluate: $\left(\frac{-23}{83}\right)$. [5]

- Q7) a) Let $Q(\sqrt{m})$ have the unique factorization property then prove that any rational prime p is either a prime π of the field or a product $\pi_1\pi_2$ of two primes, not necessarily distinct of $Q(\sqrt{m})$. [6]
 - b) Prove that $\sum_{j=1}^{p-1} \left(\frac{j}{p} \right) = 0$, P an odd prime. [5]
 - c) What is the last digit in the ordinary decimal representation of 2^{400} ? [5]
- **Q8)** a) Let a, b and c be integer with not both a and b equal to 0 and let g = gcd(a, b) and ax + by = c.
 - i) If $g \nmid c$ then show that the equation ax + by = c has no solution in integer.
 - ii) If g|c then prove that ax + by = c has infinitely many solutions. [6]
 - b) Show that $61!+1\equiv 63!+1\equiv 0 \pmod{71}$. [5]
 - c) Prove that $\prod_{d|n} d = n^{d(n)/2}$. [5]

