| Total No.      | of Qu                                                                                   | estion                                                                                                             | ns:4]                |                           | SEAT No.:           |  |  |  |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|---------------------|--|--|--|--|--|--|--|--|
| P 850          |                                                                                         |                                                                                                                    |                      | ss[Total No. of Pages : 4 |                     |  |  |  |  |  |  |  |  |
|                |                                                                                         | [5315]-450                                                                                                         |                      |                           |                     |  |  |  |  |  |  |  |  |
|                |                                                                                         |                                                                                                                    | T.Y                  | Y. B.S                    | Sc.                 |  |  |  |  |  |  |  |  |
|                |                                                                                         |                                                                                                                    | STATISTI             | CS (                      | Principal)          |  |  |  |  |  |  |  |  |
|                |                                                                                         |                                                                                                                    | ST - 344 : Op        | erati                     | ons Research        |  |  |  |  |  |  |  |  |
|                | (2                                                                                      | 013                                                                                                                | Pattern) (Pap        | er - l                    | (V) (Semester - IV) |  |  |  |  |  |  |  |  |
| Time: 21       | Hours                                                                                   | 1                                                                                                                  |                      |                           | [Max. Marks :40     |  |  |  |  |  |  |  |  |
| Instruction    | ons to                                                                                  | the c                                                                                                              | andidates:           |                           |                     |  |  |  |  |  |  |  |  |
| 1)             | All q                                                                                   | juesti                                                                                                             | ons are compulsory.  | •                         |                     |  |  |  |  |  |  |  |  |
| 2)             | Figu                                                                                    | ires to                                                                                                            | o the right indicate | full ma                   | rks.                |  |  |  |  |  |  |  |  |
| 3)             | Use of scientific calculator is allowed.                                                |                                                                                                                    |                      |                           |                     |  |  |  |  |  |  |  |  |
| 4)             | Sym                                                                                     | mbols and abbreviations have their usual meaning.                                                                  |                      |                           |                     |  |  |  |  |  |  |  |  |
| <b>Q</b> 1) a) | Choose the correct alternative in each of the following: [1ea                           |                                                                                                                    |                      |                           |                     |  |  |  |  |  |  |  |  |
|                | i) If the primal linear programing problem (LPP) has infeasible solution of its dual is |                                                                                                                    |                      |                           |                     |  |  |  |  |  |  |  |  |
|                |                                                                                         | 1)                                                                                                                 | infeasible           | 2)                        | unbounded           |  |  |  |  |  |  |  |  |
|                |                                                                                         | 3)                                                                                                                 | unique optimal       | 4)                        | not optimal         |  |  |  |  |  |  |  |  |
|                | ii)                                                                                     | g optimal solution of a Transportation                                                                             |                      |                           |                     |  |  |  |  |  |  |  |  |
|                | 1) Vogel's approximation method                                                         |                                                                                                                    |                      |                           |                     |  |  |  |  |  |  |  |  |
|                |                                                                                         | 2)                                                                                                                 | 2) Least cost method |                           |                     |  |  |  |  |  |  |  |  |
|                |                                                                                         | 3)                                                                                                                 | Hungarian method     | d                         |                     |  |  |  |  |  |  |  |  |
|                |                                                                                         | 4)                                                                                                                 | Modified distribu    | tion (N                   | IODI) method        |  |  |  |  |  |  |  |  |
|                | iii)                                                                                    | iii) The solution to a TP with m sources and n destinations is degenerate if the number of positive allocations is |                      |                           |                     |  |  |  |  |  |  |  |  |
|                |                                                                                         | 1)                                                                                                                 | m + n                | 2)                        | m + n - 1           |  |  |  |  |  |  |  |  |

4)

m + n + 1

 $m \times n \\$ 

3)

- iv) In PERT, variance of the project is based on
  - 1) critical activities
- 2) non critical activities
- 3) all activities
- 4) dummy activities
- b) State whether each of the following is true or false.

[1each]

- i) The dual of a dual is primal.
- ii) Assignment problem can be treated as a particular case of transportation problem.
- c) Define each of the following.

[1each]

- i) Artificial variable
- ii) Surplus variable
- d) What is an unbalanced TP? How to convert it into a balanced TP? [2]

## **Q2)** Attempt any two of the following:

[5 each]

a) A firm engaged in producing two models A and B performs three operations; assembly, painting and testing. The relevant data are as follows.

Total number of hours available each week are:

Assembly - 150 Painting - 80 Testing - 24

| Model | Unit sale      | Hours    | required for | each unit |  |  |
|-------|----------------|----------|--------------|-----------|--|--|
|       | Price (in Rs.) | Assembly | Painting     | Testing   |  |  |
| A     | 50             | 1        | 0.5          | 0.2       |  |  |
| В     | 80             | 1.25     | 0.5          | 0.1       |  |  |

The firm wishes to determine its weekly product - mix 50 as to maximize revenue. Formulate it as a LPP.

- b) Explain the following terms with regards to LPP.
  - i) feasible solution
- ii) optimal solution
- iii) infeasible solution
- iv) unbounded solution
- v) alternate solution

c) Write dual of the following LPP

Minimize 
$$z = 2x_1 + 3x_2 + x_3$$
  
Subject to  $x_1 - x_2 + x_3 \le 5$   
 $2x_1 + x_2 = 7$   
 $x_1 + x_2 - x_3 \ge 8$   
 $x_1, x_2, x_3 \ge 0$ 

## Q3) Attempt any two of the following:

[5 each]

- a) Explain the term "simulation". Write its merits and demerits.
- b) A car hire company has one car in each of four depots  $D_1$ ,  $D_2$ ,  $D_3$  and  $D_4$ . A Customer in each of four regions  $R_1$ ,  $R_2$ ,  $R_3$  and  $R_4$  requires a car. The distance in km between depots and regions is as follows.

| Region Depo      | $R_1$ | $R_2$ | $R_3$ | $R_4$ |
|------------------|-------|-------|-------|-------|
| $\overline{D_1}$ | 160   | 120   | 50    | 55    |
| $D_2$            | 130   | 120   | 50    | 35    |
| $D_3$            | 190   | 160   | 80    | 80    |
| $D_4$            | 200   | 175   | 110   | 105   |

How should cars be assigned to the customers so as to minimise the total distance travelled?

- c) Explain the following terms as regards to CPM:
  - i) earliest start time
- ii) earliest finish time
- iii) latest start time
- iv) latest finish time
- v) critical path

## **Q4)** Attempt any one of the following:

- a) i) Explain how simulation can be used to obtain probabilities of events related to gamma distribution. [3]
  - ii) Following table gives per unit cost of transportation (in Rs.) from sources to destinations along with availability and requirement.

| destination    |       |       |       |       |              |
|----------------|-------|-------|-------|-------|--------------|
| Sources        | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Availability |
| $S_1$          | 15    | 10    | 17    | 18    | 20           |
| $S_2$          | 16    | 13    | 12    | 13    | 60           |
| S <sub>3</sub> | 12    | 17    | 20    | 11    | 70           |
| Requirement    | 30    | 30    | 40    | 50    |              |

Obtain IBFS using VAM. Further, find optimal solution.

[7]

b) i) Explain the following terms in PERT analysis

[4]

- 1) Pessimistic time estimate
- 2) Optimistic time estimate
- 3) Most likely time estimate
- 4) Variance of the project length
- ii) Draw a network diagram from following activities. Find critical path.

| Activity    | A | В | С | D | Е | F    | G    | Н  | I  | J | K    | L    | M    | N | О |
|-------------|---|---|---|---|---|------|------|----|----|---|------|------|------|---|---|
| Predecessor | 1 | - | - | В | В | A, E | C, D | G  | Н  | Ι | C, D | C, D | C, D | J | M |
| Time (days) | 2 | 2 | 4 | 6 | 1 | 1    | 3    | 45 | 10 | 7 | 6    | 2    | 2    | 1 | 2 |

[6]

