Total No. of Questions : 4]

P815

[Total No. of Pages : 3]

[5315]-415 T.Y.B.Sc.

PHYSICS (Paper - III)

PH - 343: Thermodynamics and Statistical Physics (2013 Pattern) (Semester IV)

Time: 2 Hours | [Max. Marks: 40]

Instructions to the candidates:-

- 1) All the questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Draw neat diagram wherever necessary.
- 4) Use of logtables and calculator is allowed.
- **Q1)** Attempt All of the following (One mark each):

[10]

- a) What are transport phenomena in gases?
- b) What is Binomial distribution?
- c) Define temperature of Inversion.
- d) What do you mean by microstate of a system.
- e) Define the term canonical ensemble.
- f) What are Fermions?
- g) Define probability of an event.
- h) What is partition function?
- i) What are symmetric wave functions?
- j) What is meant by thermodynamic probability of macrostate?

P.T.O.

[10]

[8]

Q2) Attempt any two of the following (Five marks each)

- a) Derive an expression for the coefficient of viscosity (η) of a gas in terms of mean free path of its molecules and discuss the effect of temperature on coefficient of viscosity.
- b) What is Jonle Thomson effect? Prove that Jonle Thomson coefficient

$$\mu = \frac{1}{C_{p}} \left[T \left(\frac{\partial V}{\partial T} \right)_{P} - V \right]$$

c) Derive Ganssian probability distribution equation.

Q3) Attempt any two of the following (Five marks each): [10]

- a) Consider the case of N = 100 steps, where $p = q = \frac{1}{2}$. Find mean value of n_1 , mean displacement and Root mean square deviation.
- b) In a system in thermal equilibrium at Temperature T, two states with energy difference 5.52×10^{-14} erg occur with relative probability 'e²' erg deg⁻¹. Calculate the temperature. Given $K = 1.38 \times 10^{-16}$ erg/deg.
- c) Three particles are to be distributed in four energy levels a, b, c and d. Calculate all possible whys of this distribution when particles are
 - i) Classical particles and
 - ii) Fermions.
- **Q4)** a) Attempt any one [Eight marks]:
 - i) Prove that for a homogeneous fluid, $C_P C_V = T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_T$ and hence prove that for a perfect gas $C_P C_V = R$. Where symbols have their usual meanings.
 - ii) Compare M.B., B.E. and F.D. statistics.

[5315]-415

b) Attempt any one [Two marks]:

- [2]
- i) A bag contains 7 red balls, 9 white balls and 12 black balls. If a ball is drawn from the bag, what is the probability that it is either white or black?
- ii) Establish the Gibbs Helmholtzequation $U = F T(\partial F / \partial T)_{v}$.

