Total No. of Questions : 4]	SEAT No. :
P725	[Total No. of Pages : 2
[5315	5] - 314
T.Y.	B.Sc.
PHY	SICS
PH-332 : Soli	d State Physics
(2013 Pattern) (Sem	ester - III) (Paper - II)
Time: 2 Hours]	[Max. Marks : 40
Instructions to the candidates:	
#\ 4## .6 #	

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Draw neat diagrams wherever necessary.
- 4) Use of log tables and calculator is allowed.

Q1) Attempt all of the following: (One mark each)

[10]

- a) Define packing fraction.
- b) Define the term symmetry operation.
- c) State Bragg's diffraction condition in reciprocal lattice.
- d) What is nearly free electron model.
- e) What do you mean by quantitative analysis?
- f) Define Fermi energy.
- g) What are domains?
- h) What is Neel temperature?
- i) Define super conductors.
- j) Define primitive unit cell.

Q2) Attempt any two of the following: (5 Marks each)

[10]

- a) Discuss crystal structure of NaCl in details.
- b) With the help of Ewald's construction show that the diffraction condition in reciprocal lattice is exactly equivalent to $2d \sin \theta = n \lambda$ in the direct lattice.
- c) Write a note on type-I and type II superconductors.

P.T.O.

Q3) Attempt any two of the following: (5 Marks each)

[10]

- a) Find out the number of atoms per square millimeter on a plane (100) of lead whose interatomic distance is 3.499 Å. Lead has Face-centred cubic structure.
- b) In a Hall effect experiment on Zinc, a potential of 4.5µv is developed across a foil of thickness 0.02 mm. When a current of 1.5 A is passed in a direction perpendicular to a magnetic field of 2.0 T. Calculate
 - i) The Hall cofficent for Zinc.
 - ii) The electron density.(Given: Charge on electron=1.6×10⁻¹⁹C).
- c) A paramagnetic substance has 10^{28} atoms/m³. The magnetic moment of each atom is 1.79×10^{-23} A-m². Calculate the para magnetic susceptibility of the material at temperature 320°K. What would be the dipole moment of the rod of this material 0.1 m long and 1cm² cross section placed in a field of 7×10^4 A/m? (K=1.38×10²³J/°K, μ_0 =4 π ×10⁻⁷ Wb/A-m).
- **Q4)** a) Attempt any one of the following: (Eight marks)

[8]

- i) State three assumptions of sommerfeld's free electron model and obtain on expression for energy levels and density of states in one dimension.
- ii) Write detailed note on TGA and Ultraviolet visible spectrophotometer.
- b) Attempt any one of the following: (two marks)

[2]

- i) What are ferrites? Give two examples.
- ii) Sketch (112) and (2,0,0) planes in simple cubic cell.

222