Total No. of Questions :4]

SEAT No. : Total No. of Pages :4

P718

[5315] - 307 T.Y.B.Sc.

MATHEMATICS

MT - 337 (A): Operations Research

(2013 Pattern) (Semester - III) (Paper - VII) (911A3)

Time: 2 Hours] [Max. Marks:40

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of electronic calculater or log table is allowed.
- **Q1)** Attempt any <u>five</u> of the following.

 $[5 \times 2 = 10]$

- a) What do you meant by redundant constraint in L.P.P.?
- b) Define unit worth of a resource.
- c) Justify whether true or false: Assignment problem is a special case of transportation problem.
- d) Solve the following L.P.P.

$$Maximize z = 3x_1 + 2x_2$$

Subject to
$$x_1 \le 2$$
, x_1 , $x_2 \ge 0$.

- e) Identify the direction of increase in z of the function maximize $Z = 2x_1 x_2$.
- f) Write the dual of the following L.P.P.

Maximize
$$z = 2x_1 - x^2$$

Subject to
$$x_1 + 2x_2 = 5$$

$$3x_1 + 7x_2 \le 3$$

$$x_1, x_2 \ge 0$$

P.T.O.

g) Find the initial basic feasible solution of the following transportation problem by least cost method.

	I	II	III	IV	Supply
A	10	30	20	13	5
В	22	9	7	16	10
C	4	32	5	29	15
Demand	5	5	10	10	

Q2) Attempt Any two of the following.

 $[2\times5=10]$

a) Ozark Farms uses at least 800 lb of special feed daily. The special feed is a mixture of corn and soyabean meal with the following compositions:

lb per lb of feed stuff

Feedstuff	Protein	Fiber	Cost (\$/lb)
corn	0.09	0.02	0.30
Soyabean meal	0.6	0.06	0.90

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber. Formulate the problem as a linear programming 50 as to minimize the cost of the feed mix.

b) Solve the following L.P.P. by graphical method.

Maximize
$$z = 3000x + 2000y$$

Subject to
$$x + 2y \le 6$$

$$2x + y \le 8$$

$$x-y \ge -1$$

$$x, y \ge 0$$

c) Solve the following L.P.P. by simplex method.

$$Maximize z = 3x_1 + 9x_2$$

Subject to
$$x_1 + 4x_2 \le 8$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0.$$

[5315] -307

Q3) Attempt any two of the following.

 $[2 \times 5 = 10]$

a) Find the optimal solution of following assignment problem. Also find alternate optional solution if it exists.

	I	II	III	IV	V
A	3	9	2	3	7
В	6	1	5	6	6
C	9	4	7	10	3
D	9	6	2	4	5
Е	2	5	4	2	1

b) Four operators are to be assigned to four machines. The assignment costs in dollars are given as below. Operator 1 cannot be assigned to machine C. Also operator 3 cannot be assigned to machine D. Find the optimal assignment.

Machine

		A	В	C	D
Operator	1	5	5	_	2
	2	7	4	2	3
	3	8	3	5	_
	4	7	2	6	7

c) Find the initial basic feasible solution of the following transportation problem by VAM.

	$\mathrm{F}_{_{1}}$	F_2	F_3	supply
A	9	6	0	5
В	5	1	0	20
C	3	2	4	10
D	7	5	2	15
Demand	25	10	15	

Q4) Attempt any one of the following.

 $[1 \times 10 = 10]$

a) Solve the following L.P.P. by Big M-method.

Minimize
$$Z = 600x_1 + 500x_2$$

Subject to
$$2x_1 + x_2 \ge 80$$

$$x_1 + 2x_2 \ge 60$$

$$x_1, x_2 \ge 0.$$

b) Find the optimal solution of the following transportation problem.

Warehouses	\mathbf{W}_{1}	\mathbf{W}_{2}	\mathbf{W}_{3}	$\mathbf{W}_{_4}$	Supply
F_1	1	2	1	4	30
Factory F ₂	3	3	2	1	50
F_3	4	2	5	9	20
Demand	20	40	30	10	
					ı

