Total No. of Questions—4]

[Total No. of Printed Pages-4

Seat No.

[5216]-302

T.Y. B.Sc. (Computer Science) (III Sem.) EXAMINATION, 2017 COMPUTER SCIENCE

Paper II

CS-332: Theoretical Computer Science
(2013 PATTERN)

Time: Two Hours

Maximum Marks: 40

N.B. :— (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) All questions carry equal marks.
- 1. Attempt all:

 $[10 \times 1 = 10]$

- (a) Write regular expression for the set of all strings of a's and b's ending with ab over $\Sigma = \{a, b\}$
- (b) Define suffix of a string. Give one example.
- (c) "DFA cannot have more than one final states." Justify.
- (d) Write output function λ of Moore and Mealy machines.
- (e) Write any two closure properties of regular expression.
- (f) Define ambiguous grammar.
- (g) Name the type of languages accepted by Pushdown Automata.
- (h) Define non-deterministic Turing Machine.

P.T.O.

- (i) What is unit production?
- (j) Consider the following grammar:

$$S \rightarrow ADa$$

$$A \rightarrow a$$

$$D \rightarrow d$$

The grammar is in CNF. Justify.

2. Attempt any two of the following:

- $[2 \times 5 = 10]$
- (a) Convert the following grammar in GNF:

$$S \rightarrow aASla$$

$$A \rightarrow SbAISSIbA$$

- (b) Construct DFA to accept substrings having both aa and bb over $\Sigma = \{a, b\}$.
- (c) Construct PDA for language:

$$\mathbf{L} = \{a^m b^n \mid m > n \geq 1\}$$

3. Attempt any two of the following:

 $[2 \times 5 = 10]$

(a) Convert the following NFA to DFA:

[5216]-302

(b) Construct Turing Machine for language:

$$L = \{a^n b^n a^n \mid n \geq 1\}$$

(c) Minimize the following DFA using Myhill-Nerode theorem:

- 4. (a) Construct Moore and Mealy machines which outputs valid for valid strings and invalid for invalid strings for language L = a(a + b) * b. [4]
 - (b) Construct NFA for regular expression $1.0^* + 0^*.1$. [3]
 - (c) How to apply pumping lemma to prove certain languages are non-regular? [3]

Or

(a) Construct CFG for the language L = L_1L_2 where : [4] $L_1 = \{a^n \ b \mid n \geq 0\}$ $L_2 = \{b^m \ c \mid m \geq 0\}.$

[5216]-302 3 P.T.O.

- (b) Write a short note on Chomsky's hierarchy. [4]
- (c) Consider the following grammar:

$$S \,\, \rightarrow \,\, AB \, | \, aD \, | \, a$$

$$A \ \to \ a$$

$$D \ \to \ aD \, | \, aDD$$

Remove useless symbols and rewrite the grammar. [2]

[5216]-302