| <b>Total No. of Questions : 4]</b> |              | SEAT No. :              |
|------------------------------------|--------------|-------------------------|
| P679                               |              | [Total No. of Pages : 4 |
|                                    | [5315] - 214 | · ·                     |
|                                    | S.Y. B.Sc.   |                         |
|                                    | STATISTICS   |                         |

## ST-222: Sampling Distributions and Inference (2013 Pattern) (Semester- II) (Paper-II)

Time: 2 Hours] [Max. Marks: 40

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of calculator and statistical tables is allowed.
- 4) Symbols and abbreviations have their usual meaning.
- **Q1)** Attempt each of the following:
  - a) Choose the correct alternative in each of the following: [1 each]
    - i) If  $X_1$  and  $X_2$  are independent random variables (r.v.s) having N(0,1) and N(0,16) distribution respectively then probability

distribution of  $X_1^2 + \frac{1}{4}X_2^2$  is

A) N(0,17)

B)  $\chi_2^2$ 

C)  $t_2$ 

- D) F<sub>1,1</sub>
- ii) If a r.v. has chi-square distribution with variance equal to 8 then it's moment generating function (m.g.f.) is given by
  - A)  $(1-2t)^{-2}$

B)  $(1-t)^{-2}$ 

C)  $(1-2t)^2$ 

- D)  $(1-t)^2$
- iii) Suppose  $e_1, e_2, e_3$  and  $e_4$  are expected frequencies such that  $e_1, e_2 > 5$  and  $e_3 + e_4 = 8$  are obtained after fitting a probability distribution in which one parameter is estimated. Then under  $H_0$ : fitting of probability distribution is good, the test statistic used
  - A)  $\chi^2$  with 1 degrees of freedom (d.f.)
  - B)  $\chi^2$  with 2 d.f.
  - C)  $\chi^2$  with 4 d.f.
  - D)  $\chi^2$  with 3 d.f.

P.T.O.

- b) State whether each of the following statement is true or false: [1 each]
  - i) If r.v. F follows  $F_{2,2}$  distribution with  $Q_1 = 5$  then  $Q_3 = \frac{1}{5}$ .
  - ii) Let X be a r.v. having t- distribution with 5 d.f. Then the value of  $\mu_4$  is equal to  $\frac{25}{2}$ .
  - iii) Let  $X_1, X_2, \ldots, X_n$  be a random sample (r.s.) from N  $(\mu, \sigma^2)$ ,  $\mu$  is unknown. To test  $H_0$ :  $\sigma^2 = \sigma_0^2$  against  $H_1$ :  $\sigma^2 > \sigma_0^2$  the rejection region is  $\chi_{n-1}^2 \leq \chi_{n-1,1-\alpha}^2$  at  $\alpha$  level of significance (l.o.s.).
- c) State limiting behaviour of  $\chi_n^2$  as  $n \to \infty$  according to Fisher's approximation. [1]
- d) State the standard error of the statistic  $\frac{\sum_{i=1}^{n} (X_i \overline{X})^2}{n}$  [1]
- e) Give one real life situation where chi-square test of independence can be used. [1]
- f) Distinguish between two sample t-test and paired t-test. [1]

## **Q2)** Attempt ANY TWO of the following:

[5 each]

- a) Find the mode of a chi-square distribution with n d.f. Also if  $X \sim \chi_n^2$  and mode of the distribution is 5 find P ( X > 2.167).
- b) If a r.v.  $U \sim N(0,1)$ ,  $V \sim \chi_n^2$  and are independent then find the distribution of  $\frac{U}{\sqrt{\frac{V}{n}}}$ .

c) If  $X \sim \chi_{10}^2$ ,  $Y \sim \chi_9^2$  and are independent r.v.s then find

- i) P[12.242 < Y < 21.666]
- ii) Median of Y
- iii)  $P[X+Y \ge 21.689]$ .

## **Q3)** Attempt ANY TWO of the following:

[5 each]

- a) If a r.v.  $X \sim F_{n_1,n_2}$  then find the distribution of  $\frac{1}{X}$ .
- b) Derive a test statistic to test  $H_0$ :  $\sigma_1^2 = \sigma_2^2$  against  $H_1$ :  $\sigma_1^2 \neq \sigma_2^2$ . Also state the assumptions if any.
- c) If  $\overline{X}$  and  $S^2$  are the mean and the variance of a r.s. of size 10 from N(4,16) then find P(-1<X<4, 6.6688 <  $S^2$  < 17.0496).

## **Q4)** Attempt ANY ONE of the following:

- a) i) If  $X_1,...,X_n$  is a r.s. from  $N(\mu,\sigma^2)$  distribution then show that sample mean  $(\overline{X})$  and sample variance  $(S^2)$  are independently distributed.
  - ii) For two independent normal populations we have the following information:

Sample means 
$$\overline{X} = 10$$
  $\overline{Y} = 12$ 

Sample variances 
$$S_1^2 = 46$$
  $S_2^2 = 50$ 

Sample sizes 
$$n_1 = 15$$
  $n_2 = 15$ 

To test  $H_0$ :  $\mu_1 = \mu_2$  against  $H_1$ :  $\mu_1 \neq \mu_2$ , calculate the 95% confidence interval for  $(\mu_1 - \mu_2)$ . Also give the conclusion. (Use  $\alpha = 5\%$ ) [4]

[5315] - 214

b) i) If 
$$X \sim F_{n_1,n_2}$$
 and  $Y \sim F_{n_2,n_1}$  then show that  $P(X \ge a) + P(Y \ge \frac{1}{a}) = 1$  [2]

ii) A certain stimulus is administered to each of 12 patients resulted in the following increase in blood pressure:

Can it be concluded that the administration of the stimulus in general will be accompanied by increase in the b.p.? Use appropriate test to give the answer. (Use 1.0.s.=0.05)

iii) Write a short note on McNemar's test. [4]

